„Bevezető matematika B” változatai közötti eltérés

Nincs szerkesztési összefoglaló
NZH 2018 hozzáadása, tematika hozzáadása
38. sor: 38. sor:
|}
|}
== Tematika ==
== Tematika ==
TODO
Az előadások témája:
* logikai műveletek
* bizonyítási módszerek: direkt bizonyítás, indirekt bizonyítás, teljes indukció, skatulyaelv
* halmazok
* számtani és mértani sorozatok
* műveletek törtekkel, hatványokkal, gyökökkel
* nevezetes azonosságok, a hatványozás és gyökvonás azonosságai
* logaritmus fogalma
* arány- és százalékszámítás
* kásodfokú egyenletek, megoldóképlet, diszkrimináns, gyökök és együtthatók közti összefüggések, teljes négyzetté alakítás, gyöktényezős alak; másodfokú paraméteres egyenletek; másodfokúra visszavezethető magasabb fokú egyenletek
* törtes egyenlőtlenségek
* gyökös, abszolút értékes, exponenciális és logaritmusos egyenletek és egyenlőtlenségek
* függvény fogalma, értelmezési tartomány, értékkészlet, inverzfüggvény, összetett függvény fogalma; függvénytranszformációk; függvények jellemzése értékkészlet, zérushely, monotonitás, szélsőérték, periodicitás, paritás szempontjából
elemi függvények grafikonja
* trigonometria
* koordinátageometria
* kombinatorika
* valószínűségszámítás
TODO pontosítás
 


TODO folytatás
== Segédanyagok ==
== Segédanyagok ==
TODO
TODO
46. sor: 66. sor:


=== ZH ===
=== ZH ===
TODO
A félév során 2 ZH van (2018-ban: 1. a 6. hét végén; 2. a 14. hét végén).
A ZH 8 feladatból áll.
====NZH 2018./1. - B csoport====
=====1. feladat=====
Egy könyvszekrény felső polcán 7 könyv van, és alatta minden polcon 3-mal több, mint a fölötte lévőn. Összesen hány könyv van a könyvszekrényben, ha tudjuk, hogy a legalsó polcon 31-nél több, de 37-nél kevesebb.
=====2. feladat=====
Hozza a lehető legegyszerűbb alakra az alábbi kifejezést (|a|≠|b|):
 
<math>(1+\frac{a}{a-b}-\frac{b}{a+b}+\frac{2ab}{a^2-b^2}):(\frac{2a}{a^2-2ab+b^2})</math>
=====3. feladat=====
Hozza a lehető legegyszerűbb alakra az alábbi kifejezést (x>0):
 
<math>\sqrt[3]{\frac{x}{x^{-14}\cdot\sqrt{x^5}}}\cdot\frac{1}{\sqrt[6]{x^7}}</math>
=====4. feladat=====
Számítsa ki a következő kifejezés pontos értékét:
 
<math>2^{log_{4}9}+(\frac{1}{3})^{1-\log_{\sqrt{3}}6}</math>
=====5. feladat=====
András és Boldizsár együttes munkával 4 nap alatt festik ki a lakást. Hány nap alatt festenék ki a lakást külön-külön, ha az egyiküknek azegész munka háromszor annyi ideig tartana, mint a másiknak?
=====6. feladat=====
Mely x értéke lesz az <math>f(x)=6x^2+4x+3</math> függvény értéke minimális, és mennyi a minimum értéke?
=====7. feladat=====
Hogyan válasszuk meg a p valós paraméter értékét, hogy az alábbi egyenletnek ne legyen valós gyöke?
 
<math>x^2+2p x+(p+2)=0</math>
=====8. feladat=====
Oldja meg az alábbi egyenlőtlenséget a valós számok halmazán:


<math>\frac{x^2+x-12}{x-2}\ge0</math>
== Tippek ==
== Tippek ==
TODO
TODO
A lap eredeti címe: „https://vik.wiki/Bevezető_matematika_B