„Felsőbb matematika villamosmérnököknek - Haladó lineáris algebra” változatai közötti eltérés
Nincs szerkesztési összefoglaló |
Nincs szerkesztési összefoglaló |
||
36. sor: | 36. sor: | ||
*[[Média:FmLinalg_jegyzet_2012_osszefoglalo.pdf | Tematikus összefoglaló]] | *[[Média:FmLinalg_jegyzet_2012_osszefoglalo.pdf | Tematikus összefoglaló]] | ||
*[[Média:FmLinalg_jegyzet_2015_gyakorlat_1-4.pdf | 2014/15 tavaszi 1-4. gyakorlat ]] - A ZH előtti első konzultáción leadottakat is tartalmazza. | *[[Média:FmLinalg_jegyzet_2015_gyakorlat_1-4.pdf | 2014/15 tavaszi 1-4. gyakorlat ]] - A ZH előtti első konzultáción leadottakat is tartalmazza. | ||
== Házi feladatok == | |||
=== Néhány megoldott HF 2016/17 tavaszról === | |||
*[[Media:hf_16_17_tavasz_elso.pdf|Első]] | |||
*[[Media:hf_16_17_tavasz_masodik.pdf|Második]] | |||
*[[Media:hf_16_17_tavasz_harmadik.pdf|Harmadik]] | |||
*[[Media:hf_16_17_tavasz_negyedik.pdf|Negyedik]] | |||
*[[Media:hf_16_17_tavasz_otodik.pdf|Ötödik]] | |||
*[[Media:hf_16_17_tavasz_hatodik.pdf|Hatodik]] | |||
*[[Media:hf_16_17_tavasz_hetedik.pdf|Hetedik]] | |||
*[[Media:hf_16_17_tavasz_nyolcadik.pdf|Nyolcadik]] | |||
== Első zárthelyi == | == Első zárthelyi == |
A lap 2018. május 26., 08:55-kori változata
A tantárgy a lineáris algebra azon fejezeteibe nyújt bevezetést, amelyek fontosak a haladó mérnöki tanulmányok szempontjából. Fontos cél, hogy a hallgatók alkalmazni tudják a lineáris algebra módszereit, eszközeit a felmerülő szakmai problémák megoldása során. A tantárgy követelményeit eredményesen teljesítő hallgatótól elvárható, hogy értse és konkrét feladatokban, példákon alkalmazni tudja a tanult fogalmakat, ismereteket, a gyakorlatban felmerülő helyzetekben ismerje fel a tanult módszerek alkalmazási lehetőségeit, legyen képes a szakirodalomra támaszkodva önállóan bővíteni a kapcsolatos ismereteit.
Követelmények
- Jelenlét: Katalógus nincs, de a gyakorlatokon való jelenlét erősen ajánlott.
- NagyZH: A félév során két nagyzárthelyit kell legalább 40%-osra teljesíteni. Mindkét zárthelyi 40 pontos és 60%-ban számolási, valamint 40%-ban elméleti példákból áll. Néhány pont erejéig bizonyítások is előfordulhatnak.
- Házi feladat: A félév során 10-15 darab 1-2 pontos házi feladatot kell 1-2 hetes határidőkkel megoldani. A házi feladatok leadása nem kötelező, nincs minimális követelmény, azonban pótlásra sincs lehetőség.
- Félévközi jegy: A félévközi jegy a két zárthelyi kétszer 40 pontjának és a házi feladatok 20 pontra felskálázott összpontszámának összegéből adódik, a standard ponthatárok szerint. Fontos, hogy ugyan a házi feladatokból nincs minimális követelmény, azonban az összpontszámnak is el kell érnie a minimális 40%-ot.
Segédanyagok
- Előadásdiák
- Wettl-jegyzet (folyamatosan frissül)
- Meyer - Linear Algebra - A Wettl jegyzethez hasonló, csak bővebb (angol)
- SVD segédlet
- Bizonyítások gyűjteménye
- Tematikus összefoglaló
- 2014/15 tavaszi 1-4. gyakorlat - A ZH előtti első konzultáción leadottakat is tartalmazza.
Házi feladatok
Néhány megoldott HF 2016/17 tavaszról
Első zárthelyi
Rendes ZH
Pót ZH
Második zárthelyi
Rendes ZH
Pót ZH
2015 előtti számonkérések
2015 tavaszától megváltozott az MSc képzés mintaterve, melynek keretei között a haladó lineáris algebra egy önálló, félévközi jegyes tárgy lett. Korábban egy másik felsőbb matematika tárggyal közösen, negyedéves bontásban volt megtartva, zárthelyivel és vizsgával. Mivel a tananyag csak kismértékben változott az átszervezéskor, így a régi ZH és vizsga feladatsorok továbbra is jó alapot szolgáltatnak a felkészüléshez.
ZárthelyiRendes zárthelyi
Pót zárthelyi
|
Vizsga
|
Vélemények
- A ZH-kon sok, számolás és időigényes feladat van, így könnyen ki lehet csúszni az időből. Ezen kívül szükséges az elmélet alapos ismerete is, ami hangsúlyos részét képezi a számonkéréseknek, egyes tételeknél elvárt a bizonyítások ismerete is. Összességében ez a tárgy nagyon nem ingyenkredit, így érdemes vigyázni vele, és nem alábecsülni a nehézségét.
1. félév (tavasz) | |
---|---|
2. félév (ősz) | |
Egyéb | |
Főspecializációk |