„Mikroökonómia típusfeladatok” változatai közötti eltérés

Eckl Máté (vitalap | szerkesztései)
Eckl Máté (vitalap | szerkesztései)
37. sor: 37. sor:
Előző feladat során kialakuló holtteher veszteség kiszámolásának módja:<br />
Előző feladat során kialakuló holtteher veszteség kiszámolásának módja:<br />
Kiszámoljuk (p-k visszahelyettesítésével az eredeti kínálati függvénybe) Q-t és Q*-ot, ezek különbsége adja a háromszög magasságát, ma-t.<br />
Kiszámoljuk (p-k visszahelyettesítésével az eredeti kínálati függvénybe) Q-t és Q*-ot, ezek különbsége adja a háromszög magasságát, ma-t.<br />
Q=6(77-20)-250=92 \text{ és } Q*=6(65)-250=140<br />
Q=6(77-20)-250=92 és Q*=6(65)-250=140<br />
Különbségük 48.<br /><br />
Különbségük 48.<br /><br />
Megvizsgáljuk, hogy Q mely p pontokban metszi S1 és S2 függvényeket, a kettő különbsége adja a háromszög alapját, a-t.<br />
Megvizsgáljuk, hogy Q mely p pontokban metszi S1 és S2 függvényeket, a kettő különbsége adja a háromszög alapját, a-t.<br />
<math>92=6p-250 \Rightarrow p=57 és 92=6(p-20)-250 \Rightarrow p=77</math>
<math>92=6p-250 \Rightarrow p=57 \text{ és } 92=6(p-20)-250 \Rightarrow p=77</math>
Különbségük 20.<br />
Különbségük 20.<br />
A holtteher veszteség pedig: <math>T=a \cdot \frac{m_a}{2}</math> tehát esetünkben <math>T=20 \cdot \frac{48}{2}=480</math>
A holtteher veszteség pedig: <math>T=a \cdot \frac{m_a}{2}</math> tehát esetünkben <math>T=20 \cdot \frac{48}{2}=480</math>