„Analízis (MSc) típusfeladatok” változatai közötti eltérés

Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
415. sor: 415. sor:
<big>2)</big> <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
<big>2)</big> <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!


<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math>
<math>\frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}</math>


<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math>
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math>


<!--
{{Rejtett
{{Rejtett
|mutatott=Megoldás:
|mutatott=Megoldás:
475. sor: 476. sor:


<math>U(x, t) = 12 \cos{\frac{3}{5}\pi x} \cos{\frac{9}{5}\pi t} + \sum_{k=0}^\infty B_k \cos{\frac{1}{5}k\pi x} \sin{\frac{3}{5}k\pi t}, ~B_k</math> tetszőleges.
<math>U(x, t) = 12 \cos{\frac{3}{5}\pi x} \cos{\frac{9}{5}\pi t} + \sum_{k=0}^\infty B_k \cos{\frac{1}{5}k\pi x} \sin{\frac{3}{5}k\pi t}, ~B_k</math> tetszőleges.
}}
}} -->


== Parcdiff egyenletek (véges differenciák) ==
== Parcdiff egyenletek (véges differenciák) ==