„Analízis (MSc) típusfeladatok” változatai közötti eltérés

Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
711. sor: 711. sor:
}}
}}


<hr>
<big>2)</big> <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
<big>2)</big> <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)


<hr>
<hr>
<big>3)</big> <small>[2016PZH]</small> Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
<big>3)</big> <small>[2016PZH]</small> Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
{{Rejtett
|mutatott=Megoldás:
|szöveg=
<math>F = x^2 + y^2 + z^2 - 2xy -2xz - \lambda (x^2 + y^2 + z^2 - 1)</math>
<math>\frac{\partial F}{\partial x} = 2x - 2y -2z -2 \lambda x = 0</math>
<math>\frac{\partial F}{\partial y} = 2y - 2x - 2 \lambda y = 0</math>
<math>\frac{\partial F}{\partial y} = 2z - 2x - 2 \lambda z = 0</math>
<math>\frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0</math>
Vonjuk ki a második egyenletből a harmadikat:
<math>(1 - \lambda)(y - z) = 0</math>
Azaz <math>\lambda = 1</math> vagy <math>y = z</math>
* <math>\lambda = 1</math>
A második és harmadik egyenlet is azt adja, hogy:
<math>x = 0</math>
Az első egyenlet alapján:
<math>y = -z</math>
Tehát a két megoldás (a negyedik egyenlet alapján):
<math>(0, \sqrt(2), -\sqrt(2), 1)</math> és <math>(0, -\sqrt(2), \sqrt(2), 1)</math>
* <math>y = z</math> eset
<math>(1 - \lambda) x - 2y = 0</math>
<math>(1 - \lambda) y - x = 0</math>
<math>x^2 + 2y^2 = 1</math>
A második egyenletből:
<math>x = (1 -\lambda) y</math>
Az első egyenletbe írva:
<math>(1 - \lambda)^2 y - 2y = 0</math>
<math>-(\lambda^2 + 1)y = 0</math>
Azaz <math>y = z = x = 0</math>, ellentmondás.
}}


== Variáció számítás ==
== Variáció számítás ==