„Analízis (MSc) típusfeladatok” változatai közötti eltérés

Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
578. sor: 578. sor:
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága: <math>\frac{|I|}{2^k}</math>
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága: <math>\frac{|I|}{2^k}</math>


A iteráció esetében az pontosság <math>|g'(x)|</math>-el szorzódik meg minden iteráció után. Ha ez kisebb, mint <math>\frac{1}{2}</math>, akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés.
A iteráció esetében a pontosság <math>|g'(x)|</math>-el szorzódik meg minden iteráció után. Ha ez kisebb, mint <math>\frac{1}{2}</math>, akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés.


<math>|g'(x)| = \frac{2}{\sqrt{1 + (2x)^2}}</math>
<math>|g'(x)| = \frac{2}{\sqrt{1 + (2x)^2}}</math>