„Analízis (MSc) típusfeladatok” változatai közötti eltérés
571. sor: | 571. sor: | ||
<big>3)</big> <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n? | <big>3)</big> <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n? | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága: <math>\frac{|I|}{2^k}</math> | |||
A iteráció esetében az pontosság <math>|g'(x)|</math>-el szorzódik meg minden iteráció után. Ha ez kisebb, mint <math>\frac{1}{2}</math>, akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés. | |||
<math>|g'(x)| = \frac{2}{\sqrt{1 + (2x)^2}}</math> | |||
Az [1,2] tartományon ennek a maximuma <math>\frac{2}{\sqrt{3}}</math> ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum <math>\frac{2}{\sqrt{17}} \approx 0.485</math>, tehát itt az iteráció gyorsabban konvergál. | |||
}} | |||
== Lagrange multiplikátor módszer == | == Lagrange multiplikátor módszer == |