„Analízis (MSc) típusfeladatok” változatai közötti eltérés
236. sor: | 236. sor: | ||
* Az <math>u_x' = 1</math>, ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető): | * Az <math>u_x' = 1</math>, ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető): | ||
<math> u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3(\varphi(x))> = <\sigma_2\tau_3\delta_x, \varphi | <math> u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3(\varphi(x))> = <\sigma_2\tau_3\delta_x, \varphi></math> | ||
* Majd értékeljük ki a disztribúciót a <math>\varphi | * Majd értékeljük ki a disztribúciót a <math>\varphi = e^{-x^2}</math> függvényen: | ||
<math><\sigma_2\tau_3\ | <math><\sigma_2\tau_3\delta_x, e^{-x^2}> = \int_{-\infty}^{\infty}\delta (2(x - 3)) 3e^{-x^2}dx = \left. 3e^{-x^2} \right|_{x=3} = 3e^{-9}</math> | ||
}} | }} | ||