„Analízis (MSc) típusfeladatok” változatai közötti eltérés

Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
232. sor: 232. sor:
|szöveg=
|szöveg=
* Először szabaduljunk meg a konvulúciótól:
* Először szabaduljunk meg a konvulúciótól:
<math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) =  u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x))) = 1</math>
<math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) =  u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x)))</math>
* Majd értékeljük ki a disztribúciót (ez egy közismert integrál, a normál eloszlás sűrűségfüggvényének integrálja, azaz a Gauss-integrál. Ezt viszonylag nehéz levezetni, de lehet hivatkozni arra, hogy az értéke közismert.):
 
<math><1, e^{-x^2}> = \int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}</math>
* Az <math>u_x' = 1</math>, ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető):
 
<math> u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3(\varphi(x))> = <\sigma_2\tau_3\delta_x, \varphi(x)></math>
 
* Majd értékeljük ki a disztribúciót a <math>\varphi(x) = e^{-x^2}</math> függvényen:
<math><\sigma_2\tau_3\delta(x), e^{-x^2}> = \int_{-\infty}^{\infty}\delta (2(x - 3)) 3e^{-x^2}dx = \left. 3e^{-x^2} \right|_{x=3} = 3e^{-9}</math>
}}
}}