„Analízis (MSc) típusfeladatok” változatai közötti eltérés
232. sor: | 232. sor: | ||
|szöveg= | |szöveg= | ||
* Először szabaduljunk meg a konvulúciótól: | * Először szabaduljunk meg a konvulúciótól: | ||
<math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x))) = 1</math> | <math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x)))</math> | ||
* Majd értékeljük ki a disztribúciót ( | |||
<math>< | * Az <math>u_x' = 1</math>, ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető): | ||
<math> u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3(\varphi(x))> = <\sigma_2\tau_3\delta_x, \varphi(x)></math> | |||
* Majd értékeljük ki a disztribúciót a <math>\varphi(x) = e^{-x^2}</math> függvényen: | |||
<math><\sigma_2\tau_3\delta(x), e^{-x^2}> = \int_{-\infty}^{\infty}\delta (2(x - 3)) 3e^{-x^2}dx = \left. 3e^{-x^2} \right|_{x=3} = 3e^{-9}</math> | |||
}} | }} | ||