„Analízis (MSc) típusfeladatok” változatai közötti eltérés

Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
3. sor: 3. sor:
== Laplace trafó diff-egyenlet ==
== Laplace trafó diff-egyenlet ==


'''1)''' <small>[2015ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
<big>1)</big> <small>[2015ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha


<math>\dot{x}(t) = 2y(t) - x(t) + 1</math>
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math>
49. sor: 49. sor:
}}
}}


'''2)''' <small>[2016ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
<big>2)</big> <small>[2016ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha


<math>\ddot{x}(t) = 2x(t) - 3y(t)</math>
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math>
84. sor: 84. sor:
}}
}}


'''3)''' <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
<big>3)</big> <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!


{{Rejtett
{{Rejtett
99. sor: 99. sor:
== Laplace trafó szabályok alkalmazása ==
== Laplace trafó szabályok alkalmazása ==


1) <small>[2016PZH]</small> Számítsuk ki az alábbi jobboldali határétrékeket:  
<big>1)</big> <small>[2016PZH]</small> Számítsuk ki az alábbi jobboldali határétrékeket:  


<math>\lim_{x \to 0+}f'(x) = ?, ~ \lim_{x \to 0+}f''(x) = ?, ha ~\mathcal{L}(f) = \frac{s^2-3s+1}{5s^4-4s^3+8}</math>
<math>\lim_{x \to 0+}f'(x) = ?, ~ \lim_{x \to 0+}f''(x) = ?, ha ~\mathcal{L}(f) = \frac{s^2-3s+1}{5s^4-4s^3+8}</math>
131. sor: 131. sor:
== Fourier diff-egyenlet ==
== Fourier diff-egyenlet ==


1) <small>[2015ZH1]</small> Oldjuk meg Fourier transzformáció segítségével!
<big>1)</big> <small>[2015ZH1]</small> Oldjuk meg Fourier transzformáció segítségével!
<math>y'(x) - 4y(x) = 8</math>
<math>y'(x) - 4y(x) = 8</math>


155. sor: 155. sor:
}}
}}


2) <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
<big>2)</big> <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!


{{Rejtett
{{Rejtett
170. sor: 170. sor:
== Fourier trafó szabályok alkalmazása ==
== Fourier trafó szabályok alkalmazása ==


1) <small>[2015ZH1]</small> Számítsuk ki az <math>f(x) = 3xe^{-x}H(x)</math> Fourier transzformáltját, ha tudjuk, hogy <math>\mathcal{F}(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}</math>
<big>1)</big> <small>[2015ZH1]</small> Számítsuk ki az <math>f(x) = 3xe^{-x}H(x)</math> Fourier transzformáltját, ha tudjuk, hogy <math>\mathcal{F}(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}</math>


{{Rejtett
{{Rejtett
182. sor: 182. sor:
== Disztribúciók ==
== Disztribúciók ==


1) <small>[2015ZH1]</small> Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!
<big>1)</big> <small>[2015ZH1]</small> Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!


{{Rejtett
{{Rejtett
193. sor: 193. sor:
}}
}}


2) <small>[2016ZH1]</small> Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math>
<big>2)</big> <small>[2016ZH1]</small> Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math>


{{Rejtett
{{Rejtett
205. sor: 205. sor:




3) <small>[2016ZH1]</small> Mi az <math>(x-3)f = 0</math> disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
<big>3)</big> <small>[2016ZH1]</small> Mi az <math>(x-3)f = 0</math> disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)


{{Rejtett
{{Rejtett
217. sor: 217. sor:




4) <small>[2016ZH1]</small> Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként!
<big>4)</big> <small>[2016ZH1]</small> Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként!


{{Rejtett
{{Rejtett
226. sor: 226. sor:
}}
}}


5) <small>[2016PZH]</small> Legyen u az <math>f(x) = x - 3</math> által generált reguláris disztribúció, <math>\psi(x) = e^{-x^2}</math>. Számítsuk ki <math>(\sigma_2\tau_3\delta' * u)\psi</math>-t!
<big>5)</big> <small>[2016PZH]</small> Legyen u az <math>f(x) = x - 3</math> által generált reguláris disztribúció, <math>\psi(x) = e^{-x^2}</math>. Számítsuk ki <math>(\sigma_2\tau_3\delta' * u)\psi</math>-t!


{{Rejtett
{{Rejtett
242. sor: 242. sor:


<hr>
<hr>
1) <small>[2015ZH1]</small> Legyen <math>\psi(x) = (1 - x^2)e^{-x^2 / 2}</math>, a mexikói kalap wavelet.  
<big>1)</big> <small>[2015ZH1]</small> Legyen <math>\psi(x) = (1 - x^2)e^{-x^2 / 2}</math>, a mexikói kalap wavelet.  


a) Legyen  <math>f(x) = e^{-|x|}</math>. <math>\mathcal{F}(W_{\psi}f_a(b)) = ?</math>
<big>a)</big> Legyen  <math>f(x) = e^{-|x|}</math>. <math>\mathcal{F}(W_{\psi}f_a(b)) = ?</math>


b) Legyen  <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-x^2 / 2}dx=\sqrt{2\pi}.~W_{\psi}g_a(b) = ?</math>
<big>b)</big> Legyen  <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-x^2 / 2}dx=\sqrt{2\pi}.~W_{\psi}g_a(b) = ?</math>


{{Rejtett
{{Rejtett
252. sor: 252. sor:
|szöveg=
|szöveg=


a)  
<big>a)</big> A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: <math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}</math>
A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: <math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}</math>


<math>\hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}</math>
<math>\hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}</math>
268. sor: 267. sor:


<hr>
<hr>
b) <math>W_{\psi}g_a(b) = <\psi_{a, b}, g> = \int_{-\infty}^{\infty} (1 - \frac{x-b}{a}^2)e^{-((x-b)/a)^2 / 2} x^2 dx</math>
<big>b)</big> <math>W_{\psi}g_a(b) = <\psi_{a, b}, g> = \int_{-\infty}^{\infty} (1 - \frac{x-b}{a}^2)e^{-((x-b)/a)^2 / 2} x^2 dx</math>


Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet: <math> u = \frac{x-b}{a},~x = au + b,~ dx = a \cdot du</math>
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet: <math> u = \frac{x-b}{a},~x = au + b,~ dx = a \cdot du</math>
284. sor: 283. sor:
}}
}}


2) <small>[2016ZH1]</small> A Poisson wavelet a következő:
<big>2)</big> <small>[2016ZH1]</small> A Poisson wavelet a következő:
<math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math>
<math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math>


a) Mutassuk meg, hogy <math>\psi(x) = -(\frac{x^n}{n!} e^{-x})'</math>, ha <math>x \geq 0</math>
<big>a)</big> Mutassuk meg, hogy <math>\psi(x) = -(\frac{x^n}{n!} e^{-x})'</math>, ha <math>x \geq 0</math>


b) Mutassuk meg, hogy <math>\int_R \psi_n(x)dx = 0</math>
<big>b)</big> Mutassuk meg, hogy <math>\int_R \psi_n(x)dx = 0</math>


c) <math>C_{\psi_n} = ?</math>
<big>c)</big> <math>C_{\psi_n} = ?</math>


<hr>
<hr>
3) <small>[2016PZH]</small> Legyen <math>\psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}</math>. Adjuk meg f <math> \psi</math> által generált wavelet transzformáltjának Fourier transzformáltját!
<big>3)</big> <small>[2016PZH]</small> Legyen <math>\psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}</math>. Adjuk meg f <math> \psi</math> által generált wavelet transzformáltjának Fourier transzformáltját!


= Numerikus módszerek témakör =
= Numerikus módszerek témakör =


== Parcdiff egyenletek (Fourier) ==
== Parcdiff egyenletek (Fourier) ==
1) <small>[2015ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
<big>1)</big> <small>[2015ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!


<math>\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}</math>
<math>\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}</math>
377. sor: 376. sor:




2) <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
<big>2)</big> <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!


<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math>
<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math>
384. sor: 383. sor:


== Parcdiff egyenletek (véges differenciák) ==
== Parcdiff egyenletek (véges differenciák) ==
1) <small>[2015ZH2]</small> Véges differenciák segítségével, <math>h=\frac{1}{2}</math> felosztás mellett adjuk meg az <math>u_{1,2}</math> értékét, ha
<big>1)</big> <small>[2015ZH2]</small> Véges differenciák segítségével, <math>h=\frac{1}{2}</math> felosztás mellett adjuk meg az <math>u_{1,2}</math> értékét, ha


<math>\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}</math>
<math>\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}</math>
438. sor: 437. sor:
}}
}}


2) <small>[2016ZH2]</small> Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha <math>x \in [0, 5], t \geq 0</math>, az x irányú távolság, h = 1. Mennyi lesz <math> u(2, \frac{1}{18})</math>?
<big>2)</big> <small>[2016ZH2]</small> Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha <math>x \in [0, 5], t \geq 0</math>, az x irányú távolság, h = 1. Mennyi lesz <math> u(2, \frac{1}{18})</math>?


<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math>
<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math>
446. sor: 445. sor:
== Jordan normál-forma ==
== Jordan normál-forma ==


1) <small>[2016ZH2]</small> Adjuk meg az <math>x = Bx + b</math> egyenlet megoldását, ha <math>B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.</math>
<big>1)</big> <small>[2016ZH2]</small> Adjuk meg az <math>x = Bx + b</math> egyenlet megoldását, ha <math>B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.</math>


{{Rejtett
{{Rejtett
494. sor: 493. sor:
== Nem lineáris egyenletek numerikus megoldása ==
== Nem lineáris egyenletek numerikus megoldása ==


1) <small>[2015ZH2]</small> Keressük a <math>\sqrt{1 + coshx} - 2 = x</math> egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
<big>1)</big> <small>[2015ZH2]</small> Keressük a <math>\sqrt{1 + coshx} - 2 = x</math> egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.


a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
<big>a)</big> A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?


b) Használható-e a [4, 5] intervallumon az iteráció?
<big>b)</big> Használható-e a [4, 5] intervallumon az iteráció?


{{Rejtett
{{Rejtett
504. sor: 503. sor:
|szöveg=
|szöveg=


a) A húrmódszer konvergens ha <math>|I| \frac{|f''|}{2|f'|} < 1</math> a tartomány összes pontján.
<big>a)</big> A húrmódszer konvergens ha <math>|I| \frac{|f''|}{2|f'|} < 1</math> a tartomány összes pontján.


Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó.
Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó.
522. sor: 521. sor:
<math>I < \frac{2 \cdot min_I|f'|}{max_I|f''|} = \left| \frac{\frac{sinh4}{\sqrt{1 + cosh5}} - 2}{\frac{cosh4 + 1 - sinh^25}{4(1 + cosh4)^\frac{3}{2}}} \right|</math>
<math>I < \frac{2 \cdot min_I|f'|}{max_I|f''|} = \left| \frac{\frac{sinh4}{\sqrt{1 + cosh5}} - 2}{\frac{cosh4 + 1 - sinh^25}{4(1 + cosh4)^\frac{3}{2}}} \right|</math>


b) Az iteráció konvergens ha <math>|g(x)'| < 1 </math> a tartomány összes pontján.
<big>b)</big> Az iteráció konvergens ha <math>|g(x)'| < 1 </math> a tartomány összes pontján.


<math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math>
<math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math>
533. sor: 532. sor:


<hr>
<hr>
2) <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
<big>2)</big> <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?


<hr>
<hr>
3) <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
<big>3)</big> <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?


== Lagrange multiplikátor módszer ==
== Lagrange multiplikátor módszer ==
1) <small>[2015ZH2]</small> Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>x + 2y + 3z = 6</math> feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
<big>1)</big> <small>[2015ZH2]</small> Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>x + 2y + 3z = 6</math> feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!


<hr>
<hr>
2) <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
<big>2)</big> <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)


<hr>
<hr>
3) <small>[2016PZH]</small> Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
<big>3)</big> <small>[2016PZH]</small> Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!


== Variáció számítás ==
== Variáció számítás ==


1) <small>[2015ZH2]</small> Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt!
<big>1)</big> <small>[2015ZH2]</small> Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt!


<math>I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx</math>
<math>I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx</math>
556. sor: 555. sor:


<hr>
<hr>
2) <small>[2015ZH2]</small> Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt!
<big>2)</big> <small>[2015ZH2]</small> Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt!


<math>I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx</math>
<math>I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx</math>


<math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math>
<math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math>