„Analízis (MSc) típusfeladatok” változatai közötti eltérés
| 52. sor: | 52. sor: | ||
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math> | <math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math> | ||
'''Megoldás:''' | |||
* Vegyük mindkét egyenlet Laplace trafóját: | |||
<math>s^2X - sx(0) - \dot{x}(0) = 2X - 3Y</math> | |||
<math>s^2Y - sy(0) - \dot{y}(0) = X - 2Y</math> | |||
* Átrendezve és mátrixos alakra hozva: | |||
<math>\begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}0 \\ 1\end{bmatrix}</math> | |||
* Megoldás X-re: | |||
<math>X = \frac{det\left(\begin{bmatrix}0 & 3 \\ 1 & s^2+2\end{bmatrix}\right)}{det\left(\begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix}\right)} = \frac{-3}{(s^2-2)(s^2+2)+3} = \frac{-3}{s^4-1} = \frac{-3}{(s^2-1)(s^2+1)}</math> | |||
* Parc törtek: | |||
<math>\frac{A}{s^2-1} + \frac{B}{s^2+1} = \frac{(A+B)s^2 + (A-B)}{s^4-1} = \frac{-3}{s^4-1}</math> | |||
* Ahonnan: | |||
<math> A = -\frac{3}{2},~B = \frac{3}{2}</math> | |||
* Inverz Laplace után: <math>x(t) = -\frac{3}{2}sht + \frac{3}{2}sint</math> | |||
<hr> | <hr> | ||
A lap 2016. május 25., 01:12-kori változata
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját ():
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
- Mátrixos alakra hozva:
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
- Az inverz laplacehoz bontsuk parciális törtekre:
- Együtthatókat összehasonlítva:
- Vagyis
- Tehát a táblázat alapján
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját:
- Átrendezve és mátrixos alakra hozva:
- Megoldás X-re:
- Parc törtek:
- Ahonnan:
- Inverz Laplace után:
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
,
ha f Laplace transzformáltja,
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
Wavelet trafók
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy .
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
