„Számítógépes látórendszerek - Ellenőrző kérdések: Frekvenciatartomány” változatai közötti eltérés

8. sor: 8. sor:
===FFT: Fast Fourier Transformation===
===FFT: Fast Fourier Transformation===
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban.
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban.
Megjegyzés az értelmezéshez: Fourirer transzformálni csak periodikus jeleket lehet, ezt úgy biztosítjuk, hogy a képet ''végtelenszer'' ismételjük az x és y irányokban (pusztán elméleti értelemben, nyilván).
===DCT vs DFT:===
===DCT vs DFT:===
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is.
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is.