„Számítógépes látórendszerek - Ellenőrző kérdések: Javítás képtartományban” változatai közötti eltérés

135. sor: 135. sor:


== Milyen interpolációs technikákat ismer? <br/>Ismertesse a legközelebbi szomszéd, a bilineáris és a biköbös interpolációs technikák alapelvét (képletek nem szükségesek). ==
== Milyen interpolációs technikákat ismer? <br/>Ismertesse a legközelebbi szomszéd, a bilineáris és a biköbös interpolációs technikák alapelvét (képletek nem szükségesek). ==
Ebben az értelemben az adott mennyiségű képpontból nagyobb (vagy kisebb) felbontású, több (vagy kevesebb) képpontot tartalmazó képet állítunk elő. Motiválhatja például a [http://en.wikipedia.org/wiki/Image_scaling kép nagyítás]ának igénye. Nagyításnál egyértelműen hiányzó információt pótolunk, kicsinyítéskor viszont a pixelek elhelyezkedésének változása miatt szükséges interpolálni (azonos képtartalmaz kevesebb adatponttal ábrázolunk).
Ebben az értelemben az adott mennyiségű képpontból nagyobb (vagy kisebb) felbontású, több (vagy kevesebb) képpontot tartalmazó képet állítunk elő. Motiválhatja például a [http://en.wikipedia.org/wiki/Image_scaling kép nagyítás]ának igénye. Nagyításnál egyértelműen hiányzó információt pótolunk, kicsinyítéskor viszont a pixelek elhelyezkedésének változása miatt szükséges interpolálni (azonos képtartalmat kevesebb, jellemzően más pozícióba kerülő adatponttal ábrázolunk).


* '''[http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation Legközelebbi szomszéd]''': A nagyított kép egyes pixeleinek értékeit az alapján határozzuk meg, hogy melyik eredeti pixelhez vannak legközelebb, azzal tesszük őket egyenlővé. ''Pixeles'' képet eredményez.
* '''[http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation Legközelebbi szomszéd]''': A nagyított kép egyes pixeleinek értékeit az alapján határozzuk meg, hogy melyik eredeti pixelhez vannak legközelebb, azzal tesszük őket egyenlővé. ''Pixeles'' képet eredményez.
* '''[http://en.wikipedia.org/wiki/Bilinear_interpolation Bilineáris]''': Az új pixelek értékét mindkét irányban lineárisan interpoláljuk (név innen), azaz egyenest illesztünk a két közeli eredeti pixel érték közé, és a keresett érték az egyenes pixelnek megfelelő helyén felvett értéke lesz. Az egyenesillesztést tehát a legközelebbi 4 pixel alapján hajtjuk végre. Furcsa ''artifact''-okat tud okozni, viszont nagyon gyors.
* '''[http://en.wikipedia.org/wiki/Bilinear_interpolation Bilineáris]''': Az új pixelek értékét mindkét irányban lineárisan interpoláljuk (név innen), azaz egyenest illesztünk a két közeli eredeti pixel érték közé, és a keresett érték az egyenes pixelnek megfelelő helyén felvett értéke lesz. Az egyenesillesztést tehát a legközelebbi 4 pixel alapján hajtjuk végre. Furcsa ''artifact''-okat tud okozni, viszont nagyon gyors.
* '''[http://en.wikipedia.org/wiki/Bicubic_interpolation Biköbös (bicubic)]''': Lassabb a bilineárisnál, de szebb eredményt is ad. A legközelebbi 16 pixel alapján számol. Figyelembe veszi a szomszédos pixel értékeket, az x-y irányú deriváltakat és kereszt deriváltakat, az ezekből következő meredekségi kényszerekre felírt egyenleteket oldja meg. [TODO?]
* '''[http://en.wikipedia.org/wiki/Bicubic_interpolation Biköbös (bicubic)]''': Lassabb a bilineárisnál, de szebb eredményt is ad. A legközelebbi 16 pixel alapján számol. Figyelembe veszi a szomszédos pixel értékeket, az x-y irányú deriváltakat és kereszt deriváltakat, az ezekből következő meredekségi kényszerekre felírt egyenleteket oldja meg.
* [http://en.wikipedia.org/wiki/Lanczos_resampling Lánczos]
* [http://en.wikipedia.org/wiki/Lanczos_resampling Lánczos]
* Komplex megoldások
* Komplex megoldások