„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

a Az EM hullám terjedési iránya nem lehet ex, mivel S-nek merőlegesnek kell lennie mind E-re mind H-ra, E pedig nem párhuzamos egyik egységvektorral sem, tehát S nem lehet egységvektor irányú. A fenti megoldás jó a szuperpozíció miatt.
312. sor: 312. sor:
|szöveg=
|szöveg=


Megoldás hiányzik
Legyen <math>r_1</math> csak a fémgömb és <math>r_2</math> a teljes golyó sugara, valamint <math>r_0=\infty</math>.
 
 
 
Ekkor az elektromos térerősség:
 
<math>
E(r) =
\begin{cases}
{\frac Q {4\pi\varepsilon_0} \cdot \frac 1 {r^2} }, & \text{ha }r>r_2 \\
{\frac Q {4\pi\varepsilon} \cdot \frac 1 {r^2} }, & \text{ha }r_1<r<r_2
\end{cases}
</math>
 
 
 
Az elektromos potenciál:
 
<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>
 
Felhasználva a <math>C=\frac Q U</math> formulát:
 
<math>
C=4\pi{\varepsilon_0} \cdot \left(\frac 1 {\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)}\right) = 24.78pF
</math>
 
 
 
 


}}
}}