„Digitális technika 2 - Komplemens szorzás” változatai közötti eltérés

David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
1. sor: 1. sor:
Úgy tűnik, sikerült megértenem, hogy ez MIÉRT így működik, úgyhogy most leírom, hátha másnak is jól jön...
{{vissza|Digitális technika 2}}


===Hosszú szöveges===
==1. Példa:==


Szeretnénk összeszorozni 2 számot. 1. példa: 1011 * 1111. Ezt lehetne úgy csinálni, hogy sokszor egymás alá írjuk az 1011-et eltolva:
Szeretnénk összeszorozni 2 számot: 1011 * 1111 = ?
 
Ezt lehetne úgy csinálni, hogy sokszor egymás alá írjuk az 1011-et eltolva:


       1011 * 1111
       1011 * 1111
13. sor: 15. sor:
  ------------------
  ------------------


1. probléma: a komplemens szorzás csak meghatározott hosszúságú számokra működik. Viszont pl. 1011 komplemens kódban ugyanannyi, mint 11011 (bizonyítás: -16+8+valamennyi = -8+valamennyi). Tehát ha összeadáskor az egyik összeadandónak már nincs valahol számjegye, akkor oda az adott szám előjelbitjét kell írni.
'''1. Probléma:''' A komplemens szorzás csak meghatározott hosszúságú számokra működik. Viszont például 1011 komplemens kódban ugyanannyi, mint 11011 (bizonyítás: -16+8+valamennyi = -8+valamennyi). Tehát ha összeadáskor az egyik összeadandónak már nincs valahol számjegye, akkor oda az adott szám előjelbitjét kell írni.


Elvileg tehát már el tudnánk végezni a szorzást:
Elvileg tehát már el tudnánk végezni a szorzást:
26. sor: 28. sor:
Stb...
Stb...


Az összeadás eredménye pedig tényleg -15. (megjegyzés: miután a komplemens összeadás pont attól működik, hogy adott hosszúságú számoknál lehagyjuk az utolsó (maradékként keletkező) bitet, ezért ezt hagyjuk is le!)
Az összeadás eredménye pedig tényleg -15.


2. probléma: 1111 ugye -1. Szóval ahhoz, hogy -5-öt -1-gyel összeszorozzunk, kb. 4 összeadást kellene elvégezni???
Megjegyzés: miután a komplemens összeadás pont attól működik, hogy adott hosszúságú számoknál lehagyjuk az utolsó (maradékként keletkező) bitet, ezért ezt hagyjuk is le!
 
'''2. Probléma:''' 1111 ugye -1. Szóval ahhoz, hogy -5-öt -1-gyel összeszorozzunk, kb. 4 összeadást kellene elvégezni???


Innen jön a kétbitfigyeléses algoritmus alapötlete. Az 1111 4 számjegyen (mint fent láttuk) ugyanannyi, mint az 1 1 számjegyen komplemens kódban (ahol is az első és egyetlen bitnek van -1-es súlya). Szóval ha a szorzó végén sok 1-es van, azokat leszedhetjük róla az eredmény megváltozása nélkül! Ha sok 0 van a végén, azokat szintén.
Innen jön a kétbitfigyeléses algoritmus alapötlete. Az 1111 4 számjegyen (mint fent láttuk) ugyanannyi, mint az 1 1 számjegyen komplemens kódban (ahol is az első és egyetlen bitnek van -1-es súlya). Szóval ha a szorzó végén sok 1-es van, azokat leszedhetjük róla az eredmény megváltozása nélkül! Ha sok 0 van a végén, azokat szintén.


2. példa: 1011 * 000111000 = ?
==2. Példa:==
 
Szeretnénk összeszorozni 2 számot: 1011 * 000111000 = ?


Innentől már célszerűbb visszafelé gondolkodni. 1011 * 0 = 0000. Az előző indoklás alapján 1011 * 000 is 0000. De amikor a szorzó elejére egy 1-est írunk, megváltoztatjuk a súlyozást! Az 1-es -8-as súlyozással fog számítani, tehát az egyenlet bal oldalából 8-szor kivontuk az 1011-et. Ahhoz, hogy a végeredmény továbbra is jó legyen, a jobb oldalból is kivonunk ennyit. Azaz hozzáadunk 8-szor 0101-et (ami az 1011 komplemense). Az egyenletünk tehát: 1011 * 1000 = 0101000. (a 3 nulla a 8-cal való szorzás miatt jött be). (-5 * -8 = +40)
Innentől már célszerűbb visszafelé gondolkodni: 1011 * 0 = 0000. Az előző indoklás alapján 1011 * 000 is 0000. De amikor a szorzó elejére egy 1-est írunk, megváltoztatjuk a súlyozást! Az 1-es -8-as súlyozással fog számítani, tehát az egyenlet bal oldalából 8-szor kivontuk az 1011-et. Ahhoz, hogy a végeredmény továbbra is jó legyen, a jobb oldalból is kivonunk ennyit. Azaz hozzáadunk 8-szor 0101-et (ami az 1011 komplemense). Az egyenletünk tehát: 1011 * 1000 = 0101000. A 3 nulla a 8-cal való szorzás miatt jött be. (-5 * -8 = +40)


A szorzóra rápakolunk még 2 egyest (mint tudjuk, ezt megtehetjük, ilyenkor ugyanis kivonunk 2^n-t, és hozzáadunk 2*2^(n-1)-t (az utolsó előttivé vált számjegy előjelváltása miatt jön be a 2-es szorzó).
A szorzóra rápakolunk még 2 egyest (mint tudjuk, ezt megtehetjük, ilyenkor ugyanis kivonunk 2^n-t, és hozzáadunk 2*2^(n-1)-t (az utolsó előttivé vált számjegy előjelváltása miatt jön be a 2-es szorzó).


1011 * 111000 = 0101000. Ha ezután a szorzó elejére 0-t írunk, akkor az utolsó 1-es súlya ellentettjére változik. Ennek az 1-esnek a súlyozása fele akkora, mint ha 1-est írnánk 0-k elejére azonos hosszúságú számoknál, viszont kétszer annyit változik (pozitívra negatívról és  nem 0-ról negatívra). Tehát most 1011000000-t fogunk a végereményhez hozzáadni:
1011 * 111000 = 0101000. Ha ezután a szorzó elejére 0-t írunk, akkor az utolsó 1-es súlya ellentettjére változik. Ennek az 1-esnek a súlyozása fele akkora, mint ha 1-est írnánk 0-k elejére azonos hosszúságú számoknál, viszont kétszer annyit változik (pozitívra negatívról és  nem 0-ról negatívra). Tehát most 1011000000-t fogunk a végeredményhez hozzáadni:
 
1011 * 0111000 = 0101000 (előző végeredmény) + 1011000000 = 1011101000 (=-280 = 56*-5, 56=000111000).


1011 * 0111000 = 0101000 (előző végeremény) + 1011000000 = 1011101000 (=-280 = 56*-5, 56=000111000).
==Digitalizálás==


Adott tehát a módszer: végig kell menni a szorzón, figyelni az 1-0 és 0-1 átmeneteket, és a szorzandót megfelelő 2-hatványokkal szorozva hozzáadogatni a leendő eredményhez. Ez így nem tűnik egyszerűen megvalósíthatónak digitális eszközökkel, tehát kicsit átfogalmazzuk.
Adott tehát a módszer: végig kell menni a szorzón, figyelni az 1-0 és 0-1 átmeneteket, és a szorzandót megfelelő 2-hatványokkal szorozva hozzáadogatni a leendő eredményhez. Ez így nem tűnik egyszerűen megvalósíthatónak digitális eszközökkel, tehát kicsit átfogalmazzuk.
58. sor: 66. sor:
Ez azért jó, mert így egy regiszter léptetésével végig tudunk menni a szorzón, és ellenőrizni 2 bitenként (a műveletsor végére ez "kipotyog" a regiszter végén), ráadásul még az eredményhez is megfelelő eltolással tudjuk a szorzandót hozzáadni vagy kivonni.
Ez azért jó, mert így egy regiszter léptetésével végig tudunk menni a szorzón, és ellenőrizni 2 bitenként (a műveletsor végére ez "kipotyog" a regiszter végén), ráadásul még az eredményhez is megfelelő eltolással tudjuk a szorzandót hozzáadni vagy kivonni.


Az algoritmus tehát a következő:
'''Az algoritmus tehát a következő:'''
 
# Megnézzük a 2 utolsó bitet. ha ez  10, akkor kivonjuk a regiszter baloldali n bitjéből a szorzandót, ha 01, akkor hozzáadjuk. Ha 00 vagy 11, akkor nem csinálunk semmit. Az összeadás és kivonás szigorúan n bites, további maradékok érdektelenek. (mivel komplemens.)
1) Megnézzük a 2 utolsó bitet. ha ez  10, akkor kivonjuk a regiszter baloldali n bitjéből a szorzandót, ha 01, akkor hozzáadjuk. Ha 00 vagy 11, akkor nem csinálunk semmit. Az összeadás és kivonás szigorúan n bites, további maradékok érdektelenek. (mivel komplemens.)
# A regiszter tartalmát jobbra léptetjük úgy, hogy a bal oldalra mindig olyan bit kerül, mint amilyen volt (pl. 10-ból 110). Végülis így csinálunk hosszabb számot a rövidebből komplemens kódban.
 
2) A regiszter tartalmát jobbra léptetjük úgy, hogy a bal oldalra mindig olyan bit kerül, mint amilyen volt (pl. 10-ból 110). Végülis így csinálunk hosszabb számot a rövidebből komplemens kódban.


Léptetést n-szer végzünk el (látható, hogy ekkor a leendő utolsó számjegy valóban a helyére kerül).
Léptetést n-szer végzünk el (látható, hogy ekkor a leendő utolsó számjegy valóban a helyére kerül).


===Formális matematikai indoklás===
==Formális matematikai indoklás==


Legyen a tetszőleges (itt nem is fontos, hogy bináris) szám. Ezt szeretnénk megszorozni
Legyen a tetszőleges (itt nem is fontos, hogy bináris) szám. Ezt szeretnénk megszorozni