„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

David14 (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
118. sor: 118. sor:


=== 58. Feladat: Toroid tekercs fluxusa és energiája===
=== 58. Feladat: Toroid tekercs fluxusa és energiája===
Hányszorosára változik egy '''''L''''' önindukciós együtthatóval rendelkező '''''I1 = 2A''' árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan '''''I2 = 5A''''' -re növeljük? Hányszorosára változik a tekercs mágneses mezejében tárolt energia?
Hányszorosára változik egy <math>L</math> önindukciós együtthatóval rendelkező <math>I_1 = 2A</math> árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan <math>I_2 = 5A</math> -re növeljük? Hányszorosára változik a tekercs mágneses mezejében tárolt energia?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.


Egy bármilyen tekercs fluxusa az <math>\Psi=L*I</math> képletből számolható. Ez alapján a toroid fluxusváltozása: <math>\frac{\Psi_2}{\Psi_1}=\frac{L*I_2}{L*I_1}=\frac{I_2}{I_1}=2.5</math>
Egy bármilyen tekercs fluxusa az <math>\Psi=LI</math> képletből számolható. Ez alapján a toroid fluxusváltozása: <math>\frac{\Psi_2}{\Psi_1}=\frac{LI_2}{LI_1}=\frac{I_2}{I_1}=2.5</math>


Egy bármilyen tekercs energiája számolható a <math>W=\frac{1}{2}*L*I^2</math> képlet alapján. Tehát a toroid energiaváltozása: <math>\frac{W_2}{W_1}=\frac{\frac{1}{2}*L*I_2^2}{\frac{1}{2}*L*I_1^2}=\frac{I_2^2}{I_1^2}=2.5^2=6.25</math>
Egy bármilyen tekercs energiája számolható a <math>W=\frac{1}{2}LI^2</math> képlet alapján. Tehát a toroid energiaváltozása: <math>\frac{W_2}{W_1}=\frac{\frac{1}{2}L*I_2^2}{\frac{1}{2}L*I_1^2}=\frac{I_2^2}{I_1^2}=2.5^2=6.25</math>
}}
}}