„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

A VIK Wikiből
Hryghr (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
31. sor: 31. sor:
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.
 
Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.


Egy bármilyen tekercs fluxusa az <math>\Psi=L*I</math> képletből számolható. Ez alapján a toroid fluxusváltozása: <math>\frac{\Psi_2}{\Psi_1}=\frac{L*I_2}{L*I_1}=\frac{I_2}{I_1}=2.5</math>
Egy bármilyen tekercs fluxusa az <math>\Psi=L*I</math> képletből számolható. Ez alapján a toroid fluxusváltozása: <math>\frac{\Psi_2}{\Psi_1}=\frac{L*I_2}{L*I_1}=\frac{I_2}{I_1}=2.5</math>
46. sor: 44. sor:
|szöveg= <math>\beta = \frac{2* \pi}{\lambda} </math>  így <math>(\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>. Miután ez van, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét: <math>U_1 = cos (\beta l)*U_2 + j * sin(\beta l) * Z_0 * I_2</math>, és ebbe behelyettesítve megkapjuk a megoldást. }}
|szöveg= <math>\beta = \frac{2* \pi}{\lambda} </math>  így <math>(\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>. Miután ez van, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét: <math>U_1 = cos (\beta l)*U_2 + j * sin(\beta l) * Z_0 * I_2</math>, és ebbe behelyettesítve megkapjuk a megoldást. }}


=== 94. Feladat: Zárt keretben indukált áram ===
=== 94. Feladat: Zárt vezetőkeretben indukált áram ===


Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\phi(t)=30*sin(\omega t) mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\phi(t)=30*sin(\omega t) mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=Az indukálási törvény alapján <math>u_i={-d\phi(t) \over dt}=-\omega*30*cos(\omega t)</math>. Behelyettesítve a körfrekvencia értékét: <math>u_i=-30*cos(\omega t) V</math>. Innen a feszültség effektív értéke <math>U_{eff}={30 \over \sqrt 2} V</math>, az áram effektív értéke pedig <math> I_{eff}={U_{eff} \over R}={6 \over \sqrt 2} A</math>.
|szöveg=Az indukálási törvény alapján: <math>u_i=-{d\phi(t) \over dt}=-\omega*30*cos(\omega t)</math>. Behelyettesítve a körfrekvencia értékét: <math>u_i=-30*cos(\omega t) V</math>. Innen a feszültség effektív értéke <math>U_{eff}={30 \over \sqrt 2} V</math>, az áram effektív értéke pedig <math> I_{eff}={U_{eff} \over R}={6 \over \sqrt 2} A</math>.
}}
 
=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===
Az xy síkon helyezkedik el egy 3m sugarú kör alakú zárt "l" görbe. A mágneses indukció a térben homogén, z irányú komponense 40 ms idő alatt 0,8T értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben a "l" görbe mentén?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=Az indukálási törvény alapján: <math>u_i=-{d\phi(t) \over dt}=-A*{ dB(t) \over dt}=-r^2\pi*{ \bigtriangleup B\over \bigtriangleup t}=-r^2\pi*{B_2-B_1\over\bigtriangleup t}=- 3^2\pi*{0-0.8\over0.04}=565.5 V </math>
}}
}}



A lap 2014. január 9., 14:40-kori változata


Itt gyűjtjük a szóbeli vizsgán kapott feladatokat. A bennük szereplő számadatok nem túl lényegesek, a feladattípusokat próbáljuk összegyűjteni. Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletesebb megoldásokkal.

50. Feladat: Két áramjárta vezető

Két egymással párhuzamos végtelen hosszú vezető egymástól 4 m távolságban. Az egyiken 2 A, a másikon 3 A folyik. Mekkora erő hat az egyik vezeték 1 m-es szakaszára?

Megoldás

Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.

, ahol a H-t egy kör vonalán integráljuk, aminek a középpontját merőlegesen döfi át a vezeték, csak az egyik áram egy át rajta, a másik pont nem.

, ahol I a konstans áramerősség, l pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m. Derékszöget zárnak be a vektorok, így egyszerű szorzás lesz.

Tudjuk még, hogy vákuumban.

Innen a megoldás:

Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:

58. Feladat: Toroid tekercs

Hányszorosára változik egy L önindukciós együtthatóval rendelkező I1=2A árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan I2=5A-re növeljük? Hányszorosára változik a tekercs mágneses mezejében tárolt energia?

Megoldás

Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.

Egy bármilyen tekercs fluxusa az képletből számolható. Ez alapján a toroid fluxusváltozása:

Egy bármilyen tekercs energiája számolható a képlet alapján. Tehát a toroid energiaváltozása:

86. Feladat: Ideális távvezeték, számítás lánckarakterisztikával

Adott egy ideális távvezeték, hullámimpedanciája , hossza . A távvezeték végén adott az áram és a feszültség komplex amplitúdója: 2A illetve 500V. Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején.

Megoldás
így . Miután ez van, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét: , és ebbe behelyettesítve megkapjuk a megoldást.

94. Feladat: Zárt vezetőkeretben indukált áram

Egy ellenállású zárt vezetőkeret fluxusa , ahol . Mekkora a keretben folyó áram effektív értéke?

Megoldás
Az indukálási törvény alapján: . Behelyettesítve a körfrekvencia értékét: . Innen a feszültség effektív értéke , az áram effektív értéke pedig .

98. Feladat: Zárt vezetőhurokban indukált feszültség

Az xy síkon helyezkedik el egy 3m sugarú kör alakú zárt "l" görbe. A mágneses indukció a térben homogén, z irányú komponense 40 ms idő alatt 0,8T értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben a "l" görbe mentén?

Megoldás
Az indukálási törvény alapján:

149. Feladat: Koaxiális kábelben áramló teljesítmény

Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:<br\> (ahol a radiális irányú egységvektor), <br\> (ahol a fi irányú egységvektor).<br\> Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r1, a külső vezető belső sugara r2, a vezetők ideálisak, a kábel tengelye a z irányú.

Megoldás
A Poynting-vektor kifejezése: (ahol a z irányú egységvektor). <br\>Innen a teljesítmény: