„Digit1Beugró” változatai közötti eltérés
| 392. sor: | 392. sor: | ||
: Adott bemeneti kombinációra azonos kimenetet adó állapotok kódját úgy választjuk meg, hogy egy bitben térjenek el(Hamming-távolságuk 1 legyen). | : Adott bemeneti kombinációra azonos kimenetet adó állapotok kódját úgy választjuk meg, hogy egy bitben térjenek el(Hamming-távolságuk 1 legyen). | ||
;518 Miket nevezünk önfüggő szekunder változóknak? | ;518 Miket nevezünk önfüggő szekunder változóknak? | ||
: | : Olyan állapotcsoportot, amiben a következő értékek csak a csoporton belüli változóktól függ, a csoporton kívüli állapotoktól nem. Például: | ||
: Két állapot: <math>Q_a, Q_b</math> | |||
: És <math>Q_a^{t+1} = f(Q_a^t, X^t)</math>, | |||
: <math>Q_b^{t+1} = f'(Q_a^t, Q_b^t, X^t)</math> | |||
: Ekkor <math>Q_a</math> egy önfüggő szekunder változócsoportot alkot, mert más változótól nem függ. <math>Q_b</math>-re ez nem igaz, mert függ <math>Q_a</math>-tól. | |||
: <math>Q_a, Q_b</math> együtt önfüggő szekunder változócsoportot alkot, hisz nem függnek a csoporton kívüli változótól (itt nincs is több változó, ez triviális). | |||
;519 Milyen triviális HT particiókat ismer? | ;519 Milyen triviális HT particiókat ismer? | ||
: Ha minden állapot 1 db osztályban van, és ha minden állapot külön-külön osztályban van. | : Ha minden állapot 1 db osztályban van, és ha minden állapot külön-külön osztályban van. | ||