„Algoritmuselmélet - PZH, 2013.04.24.” változatai közötti eltérés
| 6. sor: | 6. sor: | ||
|szöveg= | |szöveg= | ||
<math> T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{ | <math> T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{16} \right) + O(n^2)=...=1 + O(n^2)\cdot\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{16} \right )^i\right)</math><br> | ||
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:<br> | Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:<br> | ||
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = | <math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math>, ahol <math> k = \left \lfloor log_4n \right \rfloor, r = \frac{1}{16}</math>, vagyis <math>\frac{1-\frac{1}{16}^{\left \lfloor log_4n \right \rfloor+1}} {1-\frac{1}{16}}</math><br> | ||
<math> \ | |||
Tehát <math> T(n)=...=1+\ | <math>\frac{1-\frac{1}{16}^{\left \lfloor log_4n \right \rfloor+1}} {1-\frac{1}{16}} < 2 ,</math><big>ha</big> <math> n \geq 1</math> | ||
Tehát <math> T(n)=...=1+2 \cdot O(n^2)=O(n^2)</math> | |||
}} | }} | ||