„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés

Arklur (vitalap | szerkesztései)
Arklur (vitalap | szerkesztései)
46. sor: 46. sor:
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = 0.25</math>, vagyis <math>\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25}</math><br>
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = 0.25</math>, vagyis <math>\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25}</math><br>
<math> \lim_{n \to \infty}\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25} = \frac{1}{0.75}</math><br>
<math> \lim_{n \to \infty}\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25} = \frac{1}{0.75}</math><br>
Vagyis <math> T(n)=...=1+\frac{1}{0.75}O(n^2)=O(n^2)</math>
Tehát <math> T(n)=...=1+\frac{1}{0.75}O(n^2)=O(n^2)</math>
}}
}}