„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
|||
36. sor: | 36. sor: | ||
}} | }} | ||
===5. Feladat=== | ===5. Feladat (Van megoldás)=== | ||
Egy algoritmus lépésszámáról tudjuk, hogy <math> T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + Ο(n^2)</math> és tudjuk azt is, hogy <math> T(1)=T(2)=T(3)=1</math>. Bizonyítsa be, hogy <math> T(n)=O(n^2)</math>. | Egy algoritmus lépésszámáról tudjuk, hogy <math> T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + Ο(n^2)</math> és tudjuk azt is, hogy <math> T(1)=T(2)=T(3)=1</math>. Bizonyítsa be, hogy <math> T(n)=O(n^2)</math>. | ||
{{Rejtett | {{Rejtett |