„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés

Subdiaz (vitalap | szerkesztései)
Subdiaz (vitalap | szerkesztései)
203. sor: 203. sor:


Ebből következik néhány dolog. Például az, hogy B legalább olyan nehéz probléma, mint A. Ha például B NP-teljes, akkor A is az. Ha B NP-nehéz, akkor A is az. Ha B coNP-beli, akkor A is az. Ez miért van? Hát azért, mert polinom időben át lehet alakítani az A problémát B-vé. Ezt indirekten könnyen lehet bizonyítani. Indirekt tegyük fel, hogy annak ellenére hogy B probléma NP-teljes és létezik egy olyan Karp-redukció ami A problmémát átalakítja B-vé, szóval mindezek ellenére A probléma P-beli. Ekkor A problémát egy polinom idejű f függvénnyel simán átalakítjuk B problémává, erről szól ugye a Karp-redukció. Ezek után ha bármikor B problémát akarnánk megoldani, akkor az f-függvény fordítva végrehajtásával a B inputját átalakítjuk A inputjává, megoldjuk az A problémát polinom időben, és kész is. Ez ellentmondás mivel B-ről azt mondtuk hogy NP-teljes. A másik érdekesség, hogy ha például egy NP-teljes vagy NP-nehéz problémáról kiderülne hogy P-beli, akkor az összes NP-beliről kiderülne hogy P-beli, mivel az NP-nehéz definíciója az, hogy legalább olyan nehéz mint bármely tetszőleges NP-beli. <br><br>
Ebből következik néhány dolog. Például az, hogy B legalább olyan nehéz probléma, mint A. Ha például B NP-teljes, akkor A is az. Ha B NP-nehéz, akkor A is az. Ha B coNP-beli, akkor A is az. Ez miért van? Hát azért, mert polinom időben át lehet alakítani az A problémát B-vé. Ezt indirekten könnyen lehet bizonyítani. Indirekt tegyük fel, hogy annak ellenére hogy B probléma NP-teljes és létezik egy olyan Karp-redukció ami A problmémát átalakítja B-vé, szóval mindezek ellenére A probléma P-beli. Ekkor A problémát egy polinom idejű f függvénnyel simán átalakítjuk B problémává, erről szól ugye a Karp-redukció. Ezek után ha bármikor B problémát akarnánk megoldani, akkor az f-függvény fordítva végrehajtásával a B inputját átalakítjuk A inputjává, megoldjuk az A problémát polinom időben, és kész is. Ez ellentmondás mivel B-ről azt mondtuk hogy NP-teljes. A másik érdekesség, hogy ha például egy NP-teljes vagy NP-nehéz problémáról kiderülne hogy P-beli, akkor az összes NP-beliről kiderülne hogy P-beli, mivel az NP-nehéz definíciója az, hogy legalább olyan nehéz mint bármely tetszőleges NP-beli. <br><br>
Még egy fontos megjegyzés a Karp-redukcióhoz: ugye A problémát akarjuk megoldani, de csak B-t megoldó gépünk van. Az egyik gyakorlaton elhangzott, és fontos tudni, hogy a B-t megoldó gépet az A eldöntési probléma megoldásához csak EGYSZER használhatjuk. Azért mert a Karp-redukció az ilyen.<br><br>


<big>'''(''Nem kérdezték, csak kieg.'') SAT probléma? '''<br><br></big>
<big>'''(''Nem kérdezték, csak kieg.'') SAT probléma? '''<br><br></big>