„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
|||
173. sor: | 173. sor: | ||
===7. Feladat=== | ===7. Feladat=== | ||
Létezik-e olyan X eldöntési probléma, amire X <big>∉</big> NP és X <big>≺</big> SAT egyszerre fennáll? | Létezik-e olyan X eldöntési probléma, amire X<big>∉</big>NP és X<big>≺</big>SAT egyszerre fennáll? | ||
{{Rejtett | {{Rejtett | ||
199. sor: | 199. sor: | ||
Az '''NP teljes''' problémák azok, amik NP nehezek és NP-beliek is egyszerre. A fenti dolog ide is érvényes, vagyis jó dolog ha sok nevezetes NP teljes problémát ismerünk, mert ha egy ismeretlen problémához találunk egy olyan Karp-redukciót, ami alapján az ismeretlen problémánkat visszavezethetjük egy közismert NP teljes problémára, akkor az ismeretlen problémánkról is kiderült, hogy NP teljes. <br><br> | Az '''NP teljes''' problémák azok, amik NP nehezek és NP-beliek is egyszerre. A fenti dolog ide is érvényes, vagyis jó dolog ha sok nevezetes NP teljes problémát ismerünk, mert ha egy ismeretlen problémához találunk egy olyan Karp-redukciót, ami alapján az ismeretlen problémánkat visszavezethetjük egy közismert NP teljes problémára, akkor az ismeretlen problémánkról is kiderült, hogy NP teljes. <br><br> | ||
<br><br> | <big>'''(''Nem kérdezték, csak kieg.'') Karp-redukció?'''<br><br></big> | ||
Van egy olyan gépünk, ami kizárólag B problémát tudja megoldani. Nekünk viszont A problémánk van. Ekkor ha szerencsénk van, akkor fogunk találni egy olyan Karp-redukciót, hogy A<big>≺</big>B. Ennek persze vannak feltételei. Az A eldöntési probléma inputját át kell alakítani B eldöntési probléma inputjává, és meg is kell adni ezt a függvényt, nevezzük el ezt a függvényt f függvénynek. Feltétel, hogy f függvény polinom időben kiszámolható legyen, és ezt be is kell bizonyítani. Továbbá azt is be kell bizonyítani, hogy amennyiben a normális inputra A azt válaszolná, hogy IGEN, akkor az f(normális input)-ra a B szintén ugyanezt válaszolná (és ugyanezt be kell bizonyítani NEM válaszra is). Magyarul a B dolgot megoldó gépet megerőszakoljuk hogy A problémát is hajlandó legyen megoldani. <br><br> | |||
Ebből következik néhány dolog. Például az, hogy B legalább olyan nehéz probléma, mint A. Ha például B NP-teljes, akkor A is az. Ha B NP-nehéz, akkor A is az. Ha B coNP-beli, akkor A is az. Ez miért van? Hát azért, mert polinom időben át lehet alakítani az A problémát B-vé. Ezt indirekten könnyen lehet bizonyítani. Indirekt tegyük fel, hogy annak ellenére hogy B probléma NP-teljes és létezik egy olyan Karp-redukció ami A problmémát átalakítja B-vé, szóval mindezek ellenére A probléma P-beli. Ekkor A problémát egy polinom idejű f függvénnyel simán átalakítjuk B problémává, erről szól ugye a Karp-redukció. Ezek után ha bármikor B problémát akarnánk megoldani, akkor az f-függvény fordítva végrehajtásával a B inputját átalakítjuk A inputjává, megoldjuk az A problémát polinom időben, és kész is. Ez ellentmondás mivel B-ről azt mondtuk hogy NP-teljes. A másik érdekesség, hogy ha például egy NP-teljes vagy NP-nehéz problémáról kiderülne hogy P-beli, akkor az összes NP-beliről kiderülne hogy P-beli, mivel az NP-nehéz definíciója az, hogy legalább olyan nehéz mint bármely tetszőleges NP-beli. <br><br> | |||
<big>'''(''Nem kérdezték, csak kieg.'') SAT probléma? '''<br><br></big> | <big>'''(''Nem kérdezték, csak kieg.'') SAT probléma? '''<br><br></big> |
A lap 2013. június 7., 18:43-kori változata
2013.06.06. vizsga megoldásai
1. Feladat (Van megoldás)
Ebben a feladatban a mélységi bejárással kapcsolatos kérdésekre kell válaszolni.
- (a) Adja meg a keresztél definícióját!
- (b) A mélységi bejárás során hogyan lehet a mélységi és a befejezési számok alapján felismerni a keresztéleket? Vizsgán megjegyzést fűztek hozzá: irányított gráfokra kell gondolni.
- (c) Bizonyítsa be, hogy irányítatlan gráf mélységi bejárásánál nincsenek keresztélek!
2. Feladat
Milyen műveletek vannak a nyitott címzésű hash-elésnél? Hogyan kell megvalósítani a keresést, ha a nyitott címzésű hashelésnél kvadratikus maradék próbát használunk?
3. Feladat
Adja meg az UNIÓ-HOLVAN adatszerkezet definícióját! (A fákkal való implementálást nem kell leírnia.) Mutassa meg, hogy mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban!
4. Feladat
Pista bácsi fel akar ugrálni egy n hosszú, fekete illetve fehér fokokból álló csigalépcsőn. Legfeljebb k fokot tud ugrani, de arra vigyáznia kell, hogy páros (>=2) sok foknyi ugrás után páratlan sokat és páratlan sok után mindig páros (>=2) sokat ugorjon. Adjon O(nk) lépésszámú algoritmust, amely megmondja, hogy fel tud-e úgy ugrálni a csigalépcső tetejére, hogy csak egyféle színű lépcsőfokot használ. (A lépcső fokai rendszertelenül vannak színezve, a színezést ismerjük.) Vizsgán megjegyzést fűztek hozzá: a talaj és a legteteje nem színes, csak a lépcsők; csak fölfele (előrefele) ugrál, visszafele nem.
5. Feladat (Van megoldás)
A hátizsák probléma órán tanult algoritmusát futtattuk egy konkrét inputon, melyben 3 tárgy szerepel. Mi lehetett ez a konkrét input, ha az alábbi táblázat keletkezett?
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 10 | 10 | 10 | 10 |
2 | 0 | 0 | 5 | 5 | 10 | 10 | 15 | 15 |
3 | 0 | 0 | 5 | 5 | 13 | 13 | 18 | 18 |
6. Feladat (Van megoldás)
Egy irányítatlan, élsúlyozott gráf az alábbi éllistával adott (zárójelben az élsúlyok):
- (a) Mi lehet x és y értéke, ha tudjuk, hogy az élsúlyok egész számok, és azt is tudjuk, hogy a B csúcsból indított Prim algoritmus az alábbi sorrendben vette be az értékeket: BE, ED, BA, BC. Vizsgán megjegyzést fűztek hozzá: az élsúlyok pozitív egész számok, a pozitív szót kifelejtették véletlenül.
- (b) Mely éleket és milyen sorrendben választja ki a Kruskal algoritmus? (Ha több megoldás is van, akkor az összeset adja meg!)
7. Feladat
Létezik-e olyan X eldöntési probléma, amire X∉NP és X≺SAT egyszerre fennáll?
8. Feladat
P-ben van vagy NP-teljes az alábbi eldöntési probléma:
- Input: irányítatlan G gráf
- Kérdés: Igaz-e, hogy G-ben vagy van Hamilton-út vagy G 3 színnel színezhető?