„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés
22. sor: | 22. sor: | ||
[[Fájl:keresztel_2.PNG]]<br> | [[Fájl:keresztel_2.PNG]]<br> | ||
}} | }} | ||
===2. Feladat=== | ===2. Feladat=== | ||
TODO | TODO | ||
63. sor: | 62. sor: | ||
##Ha <math>y = 3</math>, akkor ezeket szintén 6 féleképpen veheti fel, tehát összesen 36 féleképpen futhat az algoritmus. | ##Ha <math>y = 3</math>, akkor ezeket szintén 6 féleképpen veheti fel, tehát összesen 36 féleképpen futhat az algoritmus. | ||
##Ha <math>y \ge 3</math>, akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.}} | ##Ha <math>y \ge 3</math>, akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.}} | ||
===7. Feladat=== | ===7. Feladat=== | ||
TODO | TODO | ||
===8. Feladat=== | ===8. Feladat=== | ||
TODO | TODO |
A lap 2013. június 7., 15:34-kori változata
2013.06.06. vizsga megoldásai
1. Feladat
Ebben a feladatban a mélységi bejárással kapcsolatos kérdésekre kell válaszolni.
- (a) Adja meg a keresztél definícióját!
- (b) A mélységi bejárás során hogyan lehet a mélységi és a befejezési számok alapján felismerni a keresztéleket?
- (c) Bizonyítsa be, hogy irányítatlan gráf mélységi bejárásánál nincsenek keresztélek!
(a)
Tekintsük a G irányított gráf egy mélységi bejárását és a kapott T mélységi feszítő erdőt. Ezen bejárás szerint G egy x → y éle keresztél, ha x és y nem leszármazottjai egymásnak.
(b)
msz - mélységi szám
bsz - befejezési szám
Ha és , akkor az x → y egy keresztél.
Fájl:Keresztel 1.png
(c)
A b) rész alapján könnyen belátható. Ha lenne keresztél, az azt jelentené, hogy van olyan x → y él, amire fennáll, hogy és , vagyis y-ban előbb jártunk, mint x-ben, és y-nak van befejezési száma. Ennél fogva nem lehet keresztél, hiszen ha lenne, akkor y-ból eljuthattunk volna még x-be, mielőtt befejeztük volna.
Másképpen mondva: Nem fejezhettük volna be y-t anélkül, hogy ne jártunk volna x-ben.
2. Feladat
TODO
3. Feladat
TODO
4. Feladat
TODO
5. Feladat
TODO
6. Feladat
Egy irányítatlan, élsúlyozott gráf az alábbi éllistával adott (zárójelben az élsúlyok):
- (a) Mi lehet x és y értéke, ha tudjuk, hogy az élsúlyok egész számok, és azt is tudjuk, hogy a B csúcsból indított Prim algoritmus az alábbi sorrendben vette be az értékeket: BE, ED, BA, BC.
- (b) Mely éleket és milyen sorrendben választja ki a Kruskal algoritmus? (Ha több megoldás is van, akkor az összeset adja meg!)
a) Prim algoritmus - Ugyebár úgy dolgozik, hogy az aktuális fához a vele szomszédos élek közül a legkisebb súlyút veszi be. Prim: BE → ED → BA → BC
- A fához hozzáadjuk a BE élt.
- Most az ED élt választottuk. Ez alapján x értéke csak 1 lehet, így . (Feladatból kihagyták, hogy pozitív egészekről van szó, amúgy lehetne.)
- Most az AB élt adjuk hozzá, ez alapján .
- Most a BC élt adjuk hozzá, ez alapján , így végül .
b) Kruskal algoritmus - Éleket nagyság szerint sorrendbe rakjuk, és növekvő sorrendben felvesszük a fához az éleket, vigyázva, hogy ne csináljunk kört.
1 súlyú - AB, BE, ED
2 súlyú - AE
3 súlyú - BC, AD, EC (és DC, ha )
Az összes megoldás:
- Az 1 súlyú éleket féleképpen veheti fel az algoritmus (nem lehet belőlük kört csinálni, így itt nincsen para).
- Utána megpróbálná felvenni az AE élt, de azzal egy kört kapna, így nem veszi fel. Az AD éllel szintén így járna (~ezeket kéne pirosra színezni, ha olyan lenne a feladat).
- Maradtak a BC, EC és DC oldalak.
- Ha , akkor ezeket szintén 6 féleképpen veheti fel, tehát összesen 36 féleképpen futhat az algoritmus.
- Ha , akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.
7. Feladat
TODO
8. Feladat
TODO