„Információfeldolgozás laboratórium” változatai közötti eltérés
a Szikszayl átnevezte a(z) MSCInfFeldolgLab lapot a következő névre: Információfeldolgozás laboratórium |
Nincs szerkesztési összefoglaló |
||
3. sor: | 3. sor: | ||
{{Tantárgy | {{Tantárgy | ||
| név = Információfeldolgozás laboratórium | | név = Információfeldolgozás<br>laboratórium | ||
| tárgykód = VIMIM322 | | tárgykód = VIMIM322 | ||
| szak = villany MSc | | szak = villany MSc |
A lap 2013. június 1., 22:49-kori változata
Ez az oldal a korábbi SCH wikiről lett áthozva.
Ha úgy érzed, hogy bármilyen formázási vagy tartalmi probléma van vele, akkor, kérlek, javíts rajta egy rövid szerkesztéssel!
Ha nem tudod, hogyan indulj el, olvasd el a migrálási útmutatót.
Mérések
Virtuális műszerek fejlesztése
A LabView programcsomag megismerése, a virtuális műszer kialakításának lépései. Egyszerű feladatok megoldása: időzítés, jelgenerálás, kijelzés. Adott (feladatkészletből választott) virtuális műszer megvalósítása. Lehetséges feladatok: függvénygenerátor, spektrumanalizátor, oszcilloszkóp, frekvenciamenet-kiegyenlítő stb. A feladatok megoldását könyvtári függvények támogatják.
Magasszintű kódgenerálás „mitmót”-ra
Kódgenerálás „mitmót”-ra LabView segítségével. Az adott hardver kínálta VI-készlet megismerése, új projekt kialakításának lépései. Egyszerű feladatok megoldása: hőmérő, reakcióidő-mérő. Adott (feladatkészletből választott) beágyazott rendszer megvalósítása. Lehetséges feladatok: hőmérséklet-szabályozás, kisautó távirányítása, adatgyűjtő szenzorhálózat kialakítása stb. A feladatok megoldását könyvtári függvények támogatják.
Adaptív szűrők vizsgálata
LMS-algoritmus megvalósítása. Az LMS-algoritmus változatai, az XLMS-algoritmus vizsgálata. Adaptív nemrekurzív (FIR) szűrők vizsgálata. Identifikáció LMS-algoritmussal. Adaptív visszhangcsökkentés (echo cancellation) megvalósítása elektronikus és akusztikus csatornában.
Neurális és fuzzy rendszerek vizsgálata
Osztályozó rendszer megvalósítása többszintű feldolgozással. Rezgés- és hangjelek feldolgozása: főbb paraméterek kinyerése idő- és frekvencia-tartománybeli módszerekkel, osztályozás neurális és fuzzy rendszerekkel. Neurális hálózatok paraméterezésének, tanításának vizsgálata. Fuzzy rendszerek paraméterezésének vizsgálata. Zenei hangfelismerés neurális és fuzzy rendszerekkel.
Elosztott rendszerek szenzorhálózatok vizsgálata
Jelátvitel rádiós csatornán. Mintavétel szinkronizációjának megvalósítása. Interpolációs technikák alkalmazása. Akusztikus jel mintavételezése „mitmót”-ok segítségével, fúzió DSP-n. Sávszélesség jobb kihasználása: tömörítési technikák. A szenzorok számának hatása (szükséges számú, annál több vagy kevesebb szenzor jelének feldolgozása). Visszacsatolás szenzorhálózatban.