„Számítógépes grafika és képfeldolgozás házi feladat kiírások” változatai közötti eltérés
| 117. sor: | 117. sor: | ||
===Második feladat=== | ===Második feladat=== | ||
[[Fájl:Grafika_2011ő_hf2.png|thumb|300px|2011 ősz, 2. hf]] | |||
Készítsen üde zöld füves versenypályát kb. 4 cm-es 2.5 dimenziós atlétacsigák (Gastropoda Athleta Dimensio II.V) számára! Az atlétacsiga az éticsigával ellentétben bedől a kanyarban, lassításkor előre, fékezéskor hátra hajol, általában a rá ható erő irányába és azzal arányosan dönti a testét. Az atlétacsiga 2.5 dimenziós volta annyit jelent, hogy ugyan 2 dimenziós görbék által kitöltött területekből áll, de a görbék kontrolpontjainak van z koordinátája is, amely alapján a pont elmozdul az x,y síkon az erővel és a z koordinátával arányosan. A test határa zárt Catmull-Rom spline (amiből a vektorizáció konkáv sokszöget hoz létre, melyet fülvágó algoritmussal kell háromszögekre bontani), a szemek határai zárt Bézier görbék, a ház több Catmull-Clark subdivision görbével határolt sokszög. Az atlétacsiga referenciapontja (pivot pont) a referenciahelyzetében az origó, hossztengelye az y tengely (a referenciapont kerül mindig a pálya fölé, és e körül fordul el az atlétacsiga a haladási irányba). A csigát - a saját érdekében – a kontrolpontokon végrehajtott saját skálázással és elforgatással, majd a csúcspontokon glTranslatef függvényekkel kell pályára helyezni. A pálya ugyancsak zárt Catmull-Rom spline, hossza kb. 1 méter, a vezérlőpontokat POINT primitívekkel lehet felrajzolni. A virtuális világban az egységet cm-re kell választani. Az atlétacsiga a pályagörbe paraméterét egyenletesen változtatva mozog a pályán, 5 másodperc alatt ér körbe. Az egér bal gombjának lenyomása a pálya kurzorhoz legközelebbi kontrolpontját a kurzor aktuális helyére mozdítja. A kamera induláskor az egész pályát befogja, a z betű lenyomásával viszont rázoomol a csigára és követi a pályáján. A kamerát a gluOrtho2D függvénnyel kell implementálni. A Catmull-Rom és Catmull-Clark kötelező műsorszám. A fülvágás, Bézier görbe, interaktív pályamódosítás és zoom részfeladatokból mind megpróbálandó, de ezekből kettő lehet hibás is, attól még elfogadjuk a feladatot. | Készítsen üde zöld füves versenypályát kb. 4 cm-es 2.5 dimenziós atlétacsigák (Gastropoda Athleta Dimensio II.V) számára! Az atlétacsiga az éticsigával ellentétben bedől a kanyarban, lassításkor előre, fékezéskor hátra hajol, általában a rá ható erő irányába és azzal arányosan dönti a testét. Az atlétacsiga 2.5 dimenziós volta annyit jelent, hogy ugyan 2 dimenziós görbék által kitöltött területekből áll, de a görbék kontrolpontjainak van z koordinátája is, amely alapján a pont elmozdul az x,y síkon az erővel és a z koordinátával arányosan. A test határa zárt Catmull-Rom spline (amiből a vektorizáció konkáv sokszöget hoz létre, melyet fülvágó algoritmussal kell háromszögekre bontani), a szemek határai zárt Bézier görbék, a ház több Catmull-Clark subdivision görbével határolt sokszög. Az atlétacsiga referenciapontja (pivot pont) a referenciahelyzetében az origó, hossztengelye az y tengely (a referenciapont kerül mindig a pálya fölé, és e körül fordul el az atlétacsiga a haladási irányba). A csigát - a saját érdekében – a kontrolpontokon végrehajtott saját skálázással és elforgatással, majd a csúcspontokon glTranslatef függvényekkel kell pályára helyezni. A pálya ugyancsak zárt Catmull-Rom spline, hossza kb. 1 méter, a vezérlőpontokat POINT primitívekkel lehet felrajzolni. A virtuális világban az egységet cm-re kell választani. Az atlétacsiga a pályagörbe paraméterét egyenletesen változtatva mozog a pályán, 5 másodperc alatt ér körbe. Az egér bal gombjának lenyomása a pálya kurzorhoz legközelebbi kontrolpontját a kurzor aktuális helyére mozdítja. A kamera induláskor az egész pályát befogja, a z betű lenyomásával viszont rázoomol a csigára és követi a pályáján. A kamerát a gluOrtho2D függvénnyel kell implementálni. A Catmull-Rom és Catmull-Clark kötelező műsorszám. A fülvágás, Bézier görbe, interaktív pályamódosítás és zoom részfeladatokból mind megpróbálandó, de ezekből kettő lehet hibás is, attól még elfogadjuk a feladatot. | ||
| 122. sor: | 124. sor: | ||
Kiadási határidő: 2011. 09. 27. | Kiadási határidő: 2011. 09. 27. | ||
Beadási határidő: 2011. 10. 14. 23:59 | Beadási határidő: 2011. 10. 14. 23:59 | ||
===Harmadik feladat=== | ===Harmadik feladat=== | ||