„Fizika 2 - Vizsgaképlettár” változatai közötti eltérés

A VIK Wikiből
Lordviktor (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
Lordviktor (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
1. sor: 1. sor:
{| border="1"
{| border="1"
| <math>{\bf{F}} = q({\bf{v}} \times {\bf{B}})</math> (mágneses térben mozgó töltésre ható erő 30.5)  
| <math>{\bf{F}} = q({\bf{v}} \times {\bf{B}})</math> (mágneses térben mozgó töltésre ható erő 30.5) || {\bf{F}} = q({\bf{v}} \times {\bf{B}})  
|-
|-
| <math>\Phi _B  = \int {\bf{B}}  \cdot d{\bf{A}}</math> (mágneses fluxus, 30.8)  
| <math>\Phi _B  = \int {\bf{B}}  \cdot d{\bf{A}}</math> (mágneses fluxus, 30.8) || \Phi _B  = \int {\bf{B}}  \cdot d{\bf{A}}
|-
|-
| <math>L = \frac{{N\Phi _B }}{I}</math> (önindukció, 32.6)
| <math>L = \frac{{N\Phi _B }}{I}</math> (önindukció, 32.6) || L = \frac{{N\Phi _B }}{I}
|-
|-
| <math>\varepsilon _L  =  - L\frac{{dI_{} }}{{dt}}</math> (L induktivitás ellenfesz, 32.6)
| <math>\varepsilon _L  =  - L\frac{{dI_{} }}{{dt}}</math> (L induktivitás ellenfesz, 32.6) || \varepsilon _L  =  - L\frac{{dI_{} }}{{dt}}
|-
|-
| <math>M = \frac{{N_2 \Phi _{B_2 } }}{{I_1 }}</math> (kölcsönös induktivitás, 32.7)
| <math>M = \frac{{N_2 \Phi _{B_2 } }}{{I_1 }}</math> (kölcsönös induktivitás, 32.7) || M = \frac{{N_2 \Phi _{B_2 } }}{{I_1 }}
|-
|-
| <math>\varepsilon _1  =  - M\frac{{dI_2 }}{{dt}}</math> (kölcsönös indukció fesz, 32.7)
| <math>\varepsilon _1  =  - M\frac{{dI_2 }}{{dt}}</math> (kölcsönös indukció fesz, 32.7) || \varepsilon _1  =  - M\frac{{dI_2 }}{{dt}}
|-
|-
| <math>I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )</math> (áramerősség növekedése tekercsel az áramkörben, 32.8,32-26)
| <math>I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )</math> (áramerősség növekedése tekercsel az áramkörben, 32.8,32-26) || I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )  
|-
|-
| <math>U_L  = \frac{1}{2}LI^2</math> (tekercsben tárol energia, 32.9)
| <math>U_L  = \frac{1}{2}LI^2</math> (tekercsben tárol energia, 32.9) || U_L  = \frac{1}{2}LI^2
|-
|-
| <math>u_B  = \frac{{B^2 }}{{2\mu _0 }}</math> (mágneses tér energiasűrűsége, 32.9)
| <math>u_B  = \frac{{B^2 }}{{2\mu _0 }}</math> (mágneses tér energiasűrűsége, 32.9) || u_B  = \frac{{B^2 }}{{2\mu _0 }}
|-
|-
| <math>{\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V</math> eredő mágneses momentum, a mágnesezettség vektora
| <math>{\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V</math> eredő mágneses momentum, a mágnesezettség vektora|| {\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V
|-
|-
| <math>{\bf{B}} = \mu _0 ({\bf{H}} + {\bf{M}})</math> (teljes fluxussűrűség, 33.3, H mágneses térerősség)
| <math>{\bf{B}} = \mu _0 ({\bf{H}} + {\bf{M}})</math> (teljes fluxussűrűség, 33.3, H mágneses térerősség) || {\bf{B}} = \mu _0 ({\bf{H}} + {\bf{M}})  
|-
|-
| <math>{\bf{M}} = \chi {\bf{H}}</math> (mágnesezettség = mágneses szuszceptibilitás * mágneses erőtér)
| <math>{\bf{M}} = \chi {\bf{H}}</math> (mágnesezettség = mágneses szuszceptibilitás * mágneses erőtér) || {\bf{M}} = \chi {\bf{H}} 
|-
|-
| <math>{\bf{B}} = \mu _0 (1 + \chi ){\bf{H}} = \mu _0 \mu _r {\bf{H}}</math> (mágneses fluxussűrűség = (1+mágneses szuszceptibilitás)*mágneses térerősség, 33.3, 33-2)
| <math>{\bf{B}} = \mu _0 (1 + \chi ){\bf{H}} = \mu _0 \mu _r {\bf{H}}</math> (mágneses fluxussűrűség = (1+mágneses szuszceptibilitás)*mágneses térerősség, 33.3, 33-2) || {\bf{B}} = \mu _0 (1 + \chi ){\bf{H}} = \mu _0 \mu _r {\bf{H}}
|-
|-
| <math>\oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \int\limits_A^{} {{\bf{j}} \cdot d{\bf{A}}} }</math> Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok
| <math>\oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \int\limits_A^{} {{\bf{j}} \cdot d{\bf{A}}} }</math> Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok || \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \int\limits_A^{} {{\bf{j}} \cdot d{\bf{A}}} }
|-
|-
| <math>\oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }</math> Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok
| <math>\oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }</math> Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok || \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }
|-
|-
| <math>\frac{{\partial E_y}}{{\partial x}} = - \frac{{\partial B_z}}{{\partial t}}</math> (hullámegyenletrendszer egyik tagja, 35.3, 35-20)
| <math>\frac{{\partial E_y}}{{\partial x}} = - \frac{{\partial B_z}}{{\partial t}}</math> (hullámegyenletrendszer egyik tagja, 35.3, 35-20)|| \frac{{\partial E_y}}{{\partial x}} = - \frac{{\partial B_z}}{{\partial t}}
|-
|-
| <math>\frac{{\partial B_z}}{{\partial x}} = - \mu _0 \varepsilon _0 \frac{{\partial E_y}}{{\partial t}}</math> (hullámegyenletrendszer második tagja, 35.3, 35-18
| <math>\frac{{\partial B_z}}{{\partial x}} = - \mu _0 \varepsilon _0 \frac{{\partial E_y}}{{\partial t}}</math> (hullámegyenletrendszer második tagja, 35.3, 35-18 || \frac{{\partial B_z}}{{\partial x}} = - \mu _0 \varepsilon _0 \frac{{\partial E_y}}{{\partial t}}
|-
|-
| <math>E_y = E_{y _0} \sin (kx - \omega t)</math> (elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26)
| <math>E_y = E_{y _0} \sin (kx - \omega t)</math> (elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26) || E_y = E_{y0} \sin (kx - \omega t)  
|-
|-
| <math>\frac{{E_y}}{{B_z}} = \frac{\omega}{k} = c</math> (terjedési sebesség, 35.3, 35-27,35-29)
| <math>\frac{{E_y}}{{B_z}} = \frac{\omega}{k} = c</math> (terjedési sebesség, 35.3, 35-27,35-29) || \frac{{E_y}}{{B_z}} = \frac{\omega}{k} = c
|-
|-
| <math>c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s</math> (a fénysebesség, mint állandó)
| <math>c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s</math> (a fénysebesség, mint állandó) || c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s
|-
|-
| <math>u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{{2\mu _0}}B^2 (t)</math> (pillanatnyi energiasűrűség)
| <math>u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{{2\mu _0}}B^2 (t)</math> (pillanatnyi energiasűrűség) || u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{{2\mu _0}}B^2 (t)  
|-
|-
| <math>{\bf{S}} = \frac{1}{{\mu _0}}{\bf{E}} \times {\bf{B}}</math> (Poynting-vektor pillanatnyi értéke, 35.5, 35-41)
| <math>{\bf{S}} = \frac{1}{{\mu _0}}{\bf{E}} \times {\bf{B}}</math> (Poynting-vektor pillanatnyi értéke, 35.5, 35-41) || {\bf{S}} = \frac{1}{{\mu _0}}{\bf{E}} \times {\bf{B}}
|-
|-
| <math>\frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}</math> (a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként <math>S_{atl} = \frac{1}{2\mu _0} E_{y0}B_{z0} </math> 35-44)
| <math>\frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}</math> (a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként <math>S_{atl} = \frac{1}{2\mu _0} E_{y0}B_{z0} </math> 35-44)|| \frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}
|-
|-
| <math>I = S_{atl} = u_{atl} c</math> (hullám intenzitása, 35.5)
| <math>I = S_{atl} = u_{atl} c</math> (hullám intenzitása, 35.5) || I = S_{atl} = u_{atl} c
|-
|-
| <math>E^2 - (pc)^2 =  (mc^2)^2</math> (Összefüggés a relativisztikus energia és az impulzus között, 41.12,41-22)
| <math>E^2 - (pc)^2 =  (mc^2)^2</math> (Összefüggés a relativisztikus energia és az impulzus között, 41.12,41-22) || E^2 - (pc)^2 = - (mc)^2
|-
|-
| <math>U = pc</math> (U energiájú hullám p impulzust szállít, 35.6)
| <math>U = pc</math> (U energiájú hullám p impulzust szállít, 35.6) || U = pc
|-
|-
| <math>\frac{F}{A} = \frac{{S_{atl}}}{c}</math> (sugárnyomás - teljes abszorció, 35.6)
| <math>\frac{F}{A} = \frac{{S_{atl}}}{c}</math> (sugárnyomás - teljes abszorció, 35.6) || \frac{F}{A} = \frac{{S_{atl}}}{c}
|-
|-
| <math>\frac{F}{A} = \frac{{2S_{atl}}}{c}</math> (sugárnyomás - teljes reflexió, 35.6)
| <math>\frac{F}{A} = \frac{{2S_{atl}}}{c}</math> (sugárnyomás - teljes reflexió, 35.6) || \frac{F}{A} = \frac{{2S_{atl}}}{c}
|-
|-
| <math>n = \frac{c}{v} = \frac{c}{{\sqrt {\varepsilon _r}}}</math> (törésmutató = fénysebesség vákuumban/fénysebesség közegben), 37.2, 37-1)
| <math>n = \frac{c}{v} = \frac{c}{{\sqrt {\varepsilon _r}}}</math> (törésmutató = fénysebesség vákuumban/fénysebesség közegben), 37.2, 37-1)|| n = \frac{c}{v} = \frac{c}{{\sqrt {\varepsilon _r}}}
|-
|-
| <math>\int n _{} ds = extremum</math> (Az optika Fermat elve - lényegében azt fejezi ki, hogy az optikai útvonalra vett integrálja az n-nek (törésmutatónak) szélsőérték; annyit még tudni kell hozzá, hogy ez a szélsőérték a minimum, 36.4)
| <math>\int n _{} ds = extremum</math> (Az optika Fermat elve - lényegében azt fejezi ki, hogy az optikai útvonalra vett integrálja az n-nek (törésmutatónak) szélsőérték; annyit még tudni kell hozzá, hogy ez a szélsőérték a minimum, 36.4)|| \int n _{} ds = extremum
|-
|-
| <math>n_1 \sin \theta _1 = n_2 \sin \theta _2</math> (Snellius fénytörési törvénye, 37.2, 37-5)
| <math>n_1 \sin \theta _1 = n_2 \sin \theta _2</math> (Snellius fénytörési törvénye, 37.2, 37-5) || n_1 \sin \theta _1 = n_2 \sin \theta _2
|-
|-
| <math>D = \frac{1}{f} = (n - 1)(\frac{1}{{R_1}} + \frac{1}{{R_2}})</math><br/><math> D (dioptria - lencse erossege) = \frac{1}{fokusztavolsag} = </math> <math>=(relativ tor.mutato - 1)(\frac{1}{Lencse 1. gorbuleti sugara} + \frac{1}{Lencse 2. gorbuleti sugara} </math> (37.6,37.7, 37-18,37-21)
| <math>D = \frac{1}{f} = (n - 1)(\frac{1}{{R_1}} + \frac{1}{{R_2}})</math><br/><math> D (dioptria - lencse erossege) = \frac{1}{fokusztavolsag} = </math> <math>=(relativ tor.mutato - 1)(\frac{1}{Lencse 1. gorbuleti sugara} + \frac{1}{Lencse 2. gorbuleti sugara} </math> (37.6,37.7, 37-18,37-21)|| D = \frac{1}{f} = (n - 1)(\frac{1}{{R_1}} + \frac{1}{{R_2}})  
|-
|-
| <math>I = 4I_0 \cos ^2 \frac{\phi}{2}</math> Intenzitás eloszlás a kétréses interferenciánál
| <math>I = 4I_0 \cos ^2 \frac{\phi}{2}</math> Intenzitás eloszlás a kétréses interferenciánál || I = 4I_0 \cos ^2 \frac{\phi}{2}
|-
|-
| <math>\phi = k\Delta r = \frac{{2\pi}}{\lambda}\Delta r</math> (fáziskülönbség a <math>\Delta r</math> útkülönbség miatt, 38.2,38-2)
| <math>\phi = k\Delta r = \frac{{2\pi}}{\lambda}\Delta r</math> (fáziskülönbség a <math>\Delta r</math> útkülönbség miatt, 38.2,38-2) || \phi = k\Delta r = \frac{{2\pi}}{\lambda}\Delta r
|-
|-
| <math>\lambda _n = \frac{{\lambda _a}}{n}</math> (hullámhossz n törésmutatójú közegben, 38.4)
| <math>\lambda _n = \frac{{\lambda _a}}{n}</math> (hullámhossz n törésmutatójú közegben, 38.4) || \lambda _n = \frac{{\lambda _a}}{n}
|-
|-
| <math>I = I_0 \frac{{\sin ^2 (N\phi /2)}}{{\sin ^2 (\phi /2)}}</math> Intenzitáseloszlás diffrakciós rács esetén
| <math>I = I_0 \frac{{\sin ^2 (N\phi /2)}}{{\sin ^2 (\phi /2)}}</math> Intenzitáseloszlás diffrakciós rács esetén || I = I_0 \frac{{\sin ^2 (N\phi /2)}}{{\sin ^2 (\phi /2)}}
|-
|-
| <math>\phi = kd\sin \theta</math> az előző képletben a <math>\phi</math> definíciója
| <math>\phi = kd\sin \theta</math> az előző képletben a <math>\phi</math> definíciója || \phi = kd\sin \theta
|-
|-
| <math>m\lambda = d\sin \theta</math>  (Két/többréses interferencia (fő)maximumok feltétele, 38.2,38-8,38.3,38-14)
| <math>m\lambda = d\sin \theta</math>  (Két/többréses interferencia (fő)maximumok feltétele, 38.2,38-8,38.3,38-14) || m\lambda = d\sin \theta
|-
|-
| <math>r_m = \sqrt {Rm\lambda}</math> (Newton gyűrűk sugara, R - konvex lencse sugara, m = 1,2,3... (m-edik N.Gyűr.) 38.5, 38-18)
| <math>r_m = \sqrt {Rm\lambda}</math> (Newton gyűrűk sugara, R - konvex lencse sugara, m = 1,2,3... (m-edik N.Gyűr.) 38.5, 38-18) || r_m = \sqrt {Rm\lambda}
|-
|-
| <math>2d\cos \theta = m\lambda</math> (Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5)
| <math>2d\cos \theta = m\lambda</math> (Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5) || 2d\cos \theta = m\lambda
|-
|-
| <math>I = I_0 \left( {\frac{{\sin \alpha}}{\alpha}} \right)^2</math> (Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8)
| <math>I = I_0 \left( {\frac{{\sin \alpha}}{\alpha}} \right)^2</math> (Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8)|| I = I_0 \left( {\frac{{\sin \alpha}}{\alpha}} \right)^2
|-
|-
| <math>\alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta</math> (az előző képletbeli <math> \alpha </math> definíciója, 39.2,39-9, '''a a rés szélessége!'''
| <math>\alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta</math> (az előző képletbeli <math> \alpha </math> definíciója, 39.2,39-9, '''a a rés szélessége!''' || \alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta
|-
|-
| <math>m\lambda = d\sin \theta</math> (Egyréses Fraunhofer-diffrakció minimumai, 39.2,39-10)
| <math>m\lambda = d\sin \theta</math> (Egyréses Fraunhofer-diffrakció minimumai, 39.2,39-10) || m\lambda = d\sin \theta
|-
|-
| <math>D\sin \theta = 1,22\lambda</math> (Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12)
| <math>D\sin \theta = 1,22\lambda</math> (Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12) || D\sin \theta = 1,22\lambda
|-
|-
| <math>\theta _R = \frac{{1,22\lambda}}{D}</math> (Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13)
| <math>\theta _R = \frac{{1,22\lambda}}{D}</math> (Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13) || \theta _R = \frac{{1,22\lambda}}{D}
|-
|-
| <math>D \equiv \frac{{d\theta}}{{d\lambda}}</math> (diszperzió, "mennyire jól szór", 39.4, 39-17)
| <math>D \equiv \frac{{d\theta}}{{d\lambda}}</math> (diszperzió, "mennyire jól szór", 39.4, 39-17) || D \equiv \frac{{d\theta}}{{d\lambda}}
|-
|-
| <math>R \equiv \frac{\lambda}{{\Delta \lambda}}</math> (felbontóképesség, 39.4)
| <math>R \equiv \frac{\lambda}{{\Delta \lambda}}</math> (felbontóképesség, 39.4) || R \equiv \frac{\lambda}{{\Delta \lambda}}
|-
|-
| <math>R = Nm</math> (rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23)
| <math>R = Nm</math> (rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23) || R = Nm
|-
|-
| <math>2d\sin \phi = m\lambda</math> (Bragg-féle szórási feltétel, <math>\phi</math> itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24)
| <math>2d\sin \phi = m\lambda</math> (Bragg-féle szórási feltétel, <math>\phi</math> itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24) || 2d\sin \phi = m\lambda
|-
|-
| <math>\tan \theta _P = \frac{{n2}}{{n1}} = n</math> (Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2)
| <math>\tan \theta _P = \frac{{n2}}{{n1}} = n</math> (Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2) || \tan \theta _P = \frac{{n2}}{{n1}} = n
|-
|-
| <math>I = I_0 \cos ^2 \theta</math> (Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1)
| <math>I = I_0 \cos ^2 \theta</math> (Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1) || I = I_0 \cos ^2 \theta
|-
|-
| <math>du_\lambda  = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda</math> (Planck sugárzási törvénye, 42.4)
| <math>du_\lambda  = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda</math> (Planck sugárzási törvénye, 42.4) || du_\lambda  = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda
|-
|-
| <math>du_f = \frac{{8\pi}}{c^3}\frac{{hf^3}}{{e^{hf/kT} - 1}}df</math> (Planck törvény frekvenciával)
| <math>du_f = \frac{{8\pi}}{c^3}\frac{{hf^3}}{{e^{hf/kT} - 1}}df</math> (Planck törvény frekvenciával) || du_f = \frac{{8\pi}}{c^3}\frac{{hf^3}}{{e^{hf/kT} - 1}}df
|-
|-
| <math>E_n = - \frac{{mZ^2 e^4}}{{8\varepsilon _0 ^2 h^2 n^2}}</math> (Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9)
| <math>E_n = - \frac{{mZ^2 e^4}}{{8\varepsilon _0 ^2 h^2 n^2}}</math> (Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9) || E_n = - \frac{{mZ^2 e^4}}{{8\varepsilon _0 ^2 h^2 n^2}}
|-
|-
| <math>r_n = \frac{{\varepsilon _0 h^2 n^2}}{{\pi mZe^2}}</math> (Bohr pályasugár a H atomban, 43.2, 43-6)
| <math>r_n = \frac{{\varepsilon _0 h^2 n^2}}{{\pi mZe^2}}</math> (Bohr pályasugár a H atomban, 43.2, 43-6) || r_n = \frac{{\varepsilon _0 h^2 n^2}}{{\pi mZe^2}}
|-
|-
| <math>p = \frac{h}{\lambda}</math> (foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17)
| <math>p = \frac{h}{\lambda}</math> (foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17) || p = \frac{h}{\lambda}
|-
|-
| <math>hf = K_{\max} + W_0</math> (Einstein fényelektr. egyenlete, 42.5, 42-13)
| <math>hf = K_{\max} + W_0</math> (Einstein fényelektr. egyenlete, 42.5, 42-13) || hf = K_{\max} + W_0
|-
|-
| <math>\lambda ' - \lambda _0 = \frac{h}{{mc}}(1 - \cos \theta )</math> (Compton eltolódás, 42.6,42-18)  
| <math>\lambda ' - \lambda _0 = \frac{h}{{mc}}(1 - \cos \theta )</math> (Compton eltolódás, 42.6,42-18) || \lambda ' - \lambda _0 = \frac{h}{{mc}}(1 - \cos \theta )  
|-
|-
| <math>E_n = \frac{{\hbar^2 \pi ^2}}{{2mD^2}}n^2</math> <br>(dobozba zárt részecske energiaállapotai, 43.6, 43-27)
| <math>E_n = \frac{{\hbar^2 \pi ^2}}{{2mD^2}}n^2</math> <br>(dobozba zárt részecske energiaállapotai, 43.6, 43-27) || E_n = \frac{{\hbar^2 \pi ^2}}{{2mD^2}}n^2
|-
|-
| <math>\Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{{n\pi}}{D}x</math> (dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35)
| <math>\Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{{n\pi}}{D}x</math> (dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35) || \Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{{n\pi}}{D}x
|-
|-
| <math>\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}</math> <br>(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal)
| <math>\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}</math> <br>(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal) || \Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}
|-
|-
| <math>\Delta p_x \Delta x \ge \frac{{\hbar}}{2}</math> (határozatlansági reláció, 43.8)
| <math>\Delta p_x \Delta x \ge \frac{{\hbar}}{2}</math> (határozatlansági reláció, 43.8) || \Delta p_x \Delta x \ge \frac{{}}{2}
|-
|-
| <math>\Delta E\Delta t \ge \frac{{\hbar}}{2}</math> (határozatlansági reláció, 43.8)
| <math>\Delta E\Delta t \ge \frac{{\hbar}}{2}</math> (határozatlansági reláció, 43.8) || \Delta E\Delta t \ge \frac{{}}{2}
|-
|-
| <math>n(E) = g(E)f(E,T)</math>
| <math>n(E) = g(E)f(E,T)</math> || n(E) = g(E)f(E,T)
|-
|-
| <math>f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} + 1} \right]}}</math> Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre)
| <math>f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} + 1} \right]}}</math> Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre) || f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} + 1} \right]}}
|-
|-
| <math>f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} - 1} \right]}}</math> Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre)
| <math>f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} - 1} \right]}}</math> Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre) || f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} - 1} \right]}}
|-
|-
| <math>E = E_0 (n_x^2 + n_y^2 + n_z^2 )</math> a részecske energiaállapota térbeli potenciáldobozban, alapállapot <math> n_x=1 n_y=1 n_z=1 </math>
| <math>E = E_0 (n_x^2 + n_y^2 + n_z^2 )</math> a részecske energiaállapota térbeli potenciáldobozban, alapállapot <math> n_x=1 n_y=1 n_z=1 </math>|| E = E_0 (n_x^2 + n_y^2 + n_z^2 )
|-
|-
| <math>n(\varepsilon )d\varepsilon = a \cdot \sqrt \varepsilon  \cdot f(\varepsilon ,T)</math>
| <math>n(\varepsilon )d\varepsilon = a \cdot \sqrt \varepsilon  \cdot f(\varepsilon ,T)</math> || n(\varepsilon )d\varepsilon = a \cdot \sqrt \varepsilon  \cdot f(\varepsilon ,T)
|-
|-
| <math>L = \hbar\sqrt {l(l + 1)}</math> (pálya impulzusmomentuma, 44.2)
| <math>L = \hbar\sqrt {l(l + 1)}</math> (pálya impulzusmomentuma, 44.2) || L = \hbar\sqrt {l(l + 1)}
|-
|-
| <math>L_z = m_l\hbar</math> (impulzusmomentum z-irányú kompon., 44.2)
| <math>L_z = m_l\hbar</math> (impulzusmomentum z-irányú kompon., 44.2) || L_z = m_l\hbar
|-
|-
| <math>\Delta L_z \Delta \phi \ge \hbar/2</math> (határozatlansági reláció, 43.8)  
| <math>\Delta L_z \Delta \phi \ge \hbar/2</math> (határozatlansági reláció, 43.8) || \Delta L_z \Delta \phi \ge \hbar/2
|-
|-
| <math>(\mu _l )_z = - \left( {\frac{{e\hbar}}{{2m}}} \right)m_l</math> (mágn.dip.moment. z kompon, 44.2)
| <math>(\mu _l )_z = - \left( {\frac{{e\hbar}}{{2m}}} \right)m_l</math> (mágn.dip.moment. z kompon, 44.2) || (\mu _l )_z = - \left( {\frac{{e\hbar}}{{2m}}} \right)m_l
|-
|-
| <math>S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin-impulzusmom.z irány, 44.2)
| <math>S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin-impulzusmom.z irány, 44.2) || S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}
|-
|-
| <math>S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin impulzusmom., 44.2)  
| <math>S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin impulzusmom., 44.2) || S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}
|-
|-
| <math>(\mu _s )_z = - \left( {\frac{{e\hbar}}{m}} \right)m_s</math> (spin-mágnesesmom. z komp, 44.2)
| <math>(\mu _s )_z = - \left( {\frac{{e\hbar}}{m}} \right)m_s</math> (spin-mágnesesmom. z komp, 44.2) || (\mu _s )_z = - \left( {\frac{{e\hbar}}{m}} \right)m_s
|-
|-
| <math> J = \hbar\sqrt {j(j + 1)}</math> (teljes impulzusmomentum, 44.4)
| <math> J = \hbar\sqrt {j(j + 1)}</math> (teljes impulzusmomentum, 44.4) ||  J = \hbar\sqrt {j(j + 1)}
|-
|-
| <math>J_Z = m_j\hbar</math> (teljes impulzusmomentum z komp, 44.4)
| <math>J_Z = m_j\hbar</math> (teljes impulzusmomentum z komp, 44.4) || J_Z = m_j\hbar
|-
|-
| <math>R = R_0 A^{1/3}</math> (atommag R sugara, A a tömegszám, R0 egy állandó 45.2,45-2)
| <math>R = R_0 A^{1/3}</math> (atommag R sugara, A a tömegszám, R0 egy állandó 45.2,45-2) || R = R_0 A^{1/3}
|-
|-
| <math>N = N_0 e^{ - \lambda t}</math> (radioaktív bomlás törvénye, <math> \lambda = \frac{ln{2}}{T_{1/2}} </math> T1/2 felezési idő 45.4,45-9)
| <math>N = N_0 e^{ - \lambda t}</math> (radioaktív bomlás törvénye, <math> \lambda = \frac{ln{2}}{T_{1/2}} </math> T1/2 felezési idő 45.4,45-9) || N = N_0 e^{ - \lambda t}
|-
|-
| <math>N = N_0 e^{ - n\sigma x}</math> (azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, <math>\sigma</math> - hatáskeresztmetszet, <math>N_0</math> - összes részecske (ami a céltárgy felé tart), 45.6,45-35)
| <math>N = N_0 e^{ - n\sigma x}</math> (azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, <math>\sigma</math> - hatáskeresztmetszet, <math>N_0</math> - összes részecske (ami a céltárgy felé tart), 45.6,45-35) || N = N_0 e^{ - n\sigma x}
|-
|-
| <math>KE = a_1 A - a_2 A^{2/3} - a_3 \frac{{Z^2}}{{A^{1/3}}} - a_4 \frac{{(N - Z)^2}}{A} \pm a_5 A^{ - 3/4}</math> (az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám)
| <math>KE = a_1 A - a_2 A^{2/3} - a_3 \frac{{Z^2}}{{A^{1/3}}} - a_4 \frac{{(N - Z)^2}}{A} \pm a_5 A^{ - 3/4}</math> (az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám) || KE = a_1 A - a_2 A^{2/3} - a_3 \frac{{Z^2}}{{A^{1/3}}} - a_4 \frac{{(N - Z)^2}}{A} \pm a_5 A^{ - 3/4}
|}
|}


168. sor: 168. sor:


-- [[LamIstvan|Cipka]] - 2010.01.12.
-- [[LamIstvan|Cipka]] - 2010.01.12.
[[Category:Infoalap]]

A lap 2013. január 28., 08:54-kori változata

(mágneses térben mozgó töltésre ható erő 30.5) {\bf{F}} = q({\bf{v}} \times {\bf{B}})
(mágneses fluxus, 30.8) \Phi _B = \int {\bf{B}} \cdot d{\bf{A}}
(önindukció, 32.6) L = \fracSablon:N\Phi B{I}
(L induktivitás ellenfesz, 32.6) \varepsilon _L = - L\frac{{dI_{} }}Sablon:Dt
(kölcsönös induktivitás, 32.7) M = \frac{{N_2 \Phi _{B_2 } }}Sablon:I 1
(kölcsönös indukció fesz, 32.7) \varepsilon _1 = - M\fracSablon:DI 2Sablon:Dt
(áramerősség növekedése tekercsel az áramkörben, 32.8,32-26) I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )
(tekercsben tárol energia, 32.9) U_L = \frac{1}{2}LI^2
(mágneses tér energiasűrűsége, 32.9) u_B = \fracSablon:B^2Sablon:2\mu 0
eredő mágneses momentum, a mágnesezettség vektora {\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V
(teljes fluxussűrűség, 33.3, H mágneses térerősség) {\bf{B}} = \mu _0 ({\bf{H}} + {\bf{M}})
(mágnesezettség = mágneses szuszceptibilitás * mágneses erőtér) {\bf{M}} = \chi {\bf{H}}
(mágneses fluxussűrűség = (1+mágneses szuszceptibilitás)*mágneses térerősség, 33.3, 33-2) {\bf{B}} = \mu _0 (1 + \chi ){\bf{H}} = \mu _0 \mu _r {\bf{H}}
Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \int\limits_A^{} {{\bf{j}} \cdot d{\bf{A}}} }
Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }
(hullámegyenletrendszer egyik tagja, 35.3, 35-20) \fracSablon:\partial E ySablon:\partial x = - \fracSablon:\partial B zSablon:\partial t
(hullámegyenletrendszer második tagja, 35.3, 35-18 \fracSablon:\partial B zSablon:\partial x = - \mu _0 \varepsilon _0 \fracSablon:\partial E ySablon:\partial t
(elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26) E_y = E_{y0} \sin (kx - \omega t)
(terjedési sebesség, 35.3, 35-27,35-29) \fracSablon:E ySablon:B z = \frac{\omega}{k} = c
(a fénysebesség, mint állandó) c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s
(pillanatnyi energiasűrűség) u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}Sablon:2\mu 0B^2 (t)
(Poynting-vektor pillanatnyi értéke, 35.5, 35-41) {\bf{S}} = \frac{1}Sablon:\mu 0{\bf{E}} \times {\bf{B}}
(a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként 35-44) \frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}
(hullám intenzitása, 35.5) I = S_{atl} = u_{atl} c
(Összefüggés a relativisztikus energia és az impulzus között, 41.12,41-22) E^2 - (pc)^2 = - (mc)^2
(U energiájú hullám p impulzust szállít, 35.6) U = pc
(sugárnyomás - teljes abszorció, 35.6) \frac{F}{A} = \frac{{S_{atl}}}{c}
(sugárnyomás - teljes reflexió, 35.6) \frac{F}{A} = \frac{{2S_{atl}}}{c}
(törésmutató = fénysebesség vákuumban/fénysebesség közegben), 37.2, 37-1) n = \frac{c}{v} = \frac{c}{{\sqrt {\varepsilon _r}}}
(Az optika Fermat elve - lényegében azt fejezi ki, hogy az optikai útvonalra vett integrálja az n-nek (törésmutatónak) szélsőérték; annyit még tudni kell hozzá, hogy ez a szélsőérték a minimum, 36.4) \int n _{} ds = extremum
(Snellius fénytörési törvénye, 37.2, 37-5) n_1 \sin \theta _1 = n_2 \sin \theta _2

(37.6,37.7, 37-18,37-21)
D = \frac{1}{f} = (n - 1)(\frac{1}Sablon:R 1 + \frac{1}Sablon:R 2)
Intenzitás eloszlás a kétréses interferenciánál I = 4I_0 \cos ^2 \frac{\phi}{2}
(fáziskülönbség a útkülönbség miatt, 38.2,38-2) \phi = k\Delta r = \fracSablon:2\pi{\lambda}\Delta r
(hullámhossz n törésmutatójú közegben, 38.4) \lambda _n = \fracSablon:\lambda a{n}
Intenzitáseloszlás diffrakciós rács esetén I = I_0 \fracSablon:\sin ^2 (N\phi /2)Sablon:\sin ^2 (\phi /2)
az előző képletben a definíciója \phi = kd\sin \theta
(Két/többréses interferencia (fő)maximumok feltétele, 38.2,38-8,38.3,38-14) m\lambda = d\sin \theta
(Newton gyűrűk sugara, R - konvex lencse sugara, m = 1,2,3... (m-edik N.Gyűr.) 38.5, 38-18) r_m = \sqrt {Rm\lambda}
(Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5) 2d\cos \theta = m\lambda
(Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8) I = I_0 \left( {\fracSablon:\sin \alpha{\alpha}} \right)^2
(az előző képletbeli definíciója, 39.2,39-9, a a rés szélessége! \alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta
(Egyréses Fraunhofer-diffrakció minimumai, 39.2,39-10) m\lambda = d\sin \theta
(Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12) D\sin \theta = 1,22\lambda
(Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13) \theta _R = \fracSablon:1,22\lambda{D}
(diszperzió, "mennyire jól szór", 39.4, 39-17) D \equiv \fracSablon:D\thetaSablon:D\lambda
(felbontóképesség, 39.4) R \equiv \frac{\lambda}Sablon:\Delta \lambda
(rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23) R = Nm
(Bragg-féle szórási feltétel, itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24) 2d\sin \phi = m\lambda
(Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2) \tan \theta _P = \fracSablon:N2Sablon:N1 = n
(Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1) I = I_0 \cos ^2 \theta
(Planck sugárzási törvénye, 42.4) du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda
(Planck törvény frekvenciával) du_f = \fracSablon:8\pi{c^3}\fracSablon:Hf^3{{e^{hf/kT} - 1}}df
(Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9) E_n = - \fracSablon:MZ^2 e^4Sablon:8\varepsilon 0 ^2 h^2 n^2
(Bohr pályasugár a H atomban, 43.2, 43-6) r_n = \fracSablon:\varepsilon 0 h^2 n^2Sablon:\pi mZe^2
(foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17) p = \frac{h}{\lambda}
(Einstein fényelektr. egyenlete, 42.5, 42-13) hf = K_{\max} + W_0
(Compton eltolódás, 42.6,42-18) \lambda ' - \lambda _0 = \frac{h}Sablon:Mc(1 - \cos \theta )

(dobozba zárt részecske energiaállapotai, 43.6, 43-27)
E_n = \fracSablon:\hbar^2 \pi ^2Sablon:2mD^2n^2
(dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35) \Psi (x) = \sqrt {\frac{2}{D}} \sin \fracSablon:N\pi{D}x

(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal)
\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}
(határozatlansági reláció, 43.8) \Delta p_x \Delta x \ge \frac{{}}{2}
(határozatlansági reláció, 43.8) \Delta E\Delta t \ge \frac{{}}{2}
n(E) = g(E)f(E,T)
Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre) f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\fracSablon:\varepsilon - \varepsilon FSablon:KT} \right\} + 1} \right]}}
Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre) f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\fracSablon:\varepsilon - \varepsilon FSablon:KT} \right\} - 1} \right]}}
a részecske energiaállapota térbeli potenciáldobozban, alapállapot E = E_0 (n_x^2 + n_y^2 + n_z^2 )
n(\varepsilon )d\varepsilon = a \cdot \sqrt \varepsilon \cdot f(\varepsilon ,T)
(pálya impulzusmomentuma, 44.2) L = \hbar\sqrt {l(l + 1)}
(impulzusmomentum z-irányú kompon., 44.2) L_z = m_l\hbar
(határozatlansági reláció, 43.8) \Delta L_z \Delta \phi \ge \hbar/2
(mágn.dip.moment. z kompon, 44.2) (\mu _l )_z = - \left( {\fracSablon:E\hbarSablon:2m} \right)m_l
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} (spin-impulzusmom.z irány, 44.2) S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}
Értelmezés sikertelen (ismeretlen „\raise” függvény): {\displaystyle S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} (spin impulzusmom., 44.2) S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}
(spin-mágnesesmom. z komp, 44.2) (\mu _s )_z = - \left( {\fracSablon:E\hbar{m}} \right)m_s
(teljes impulzusmomentum, 44.4) J = \hbar\sqrt {j(j + 1)}
(teljes impulzusmomentum z komp, 44.4) J_Z = m_j\hbar
(atommag R sugara, A a tömegszám, R0 egy állandó 45.2,45-2) R = R_0 A^{1/3}
(radioaktív bomlás törvénye, T1/2 felezési idő 45.4,45-9) N = N_0 e^{ - \lambda t}
(azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, - hatáskeresztmetszet, - összes részecske (ami a céltárgy felé tart), 45.6,45-35) N = N_0 e^{ - n\sigma x}
(az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám) KE = a_1 A - a_2 A^{2/3} - a_3 \fracSablon:Z^2{{A^{1/3}}} - a_4 \fracSablon:(N - Z)^2{A} \pm a_5 A^{ - 3/4}

Latex példák wikin

-- Subi - 2007.01.14.

-- Cipka - 2010.01.12.