„Fizika1 vizsga 2008.01.30” változatai közötti eltérés
63. sor: | 63. sor: | ||
:C: 20,3 N | :C: 20,3 N | ||
:D: 30,3 N | :D: 30,3 N | ||
:E: Egyik sem | |||
;5. Egy 100 literes edényben lévő ideális gáz tömegét 1kg-mal csökkentve a nyomás 1 MPa-lal csökken. Mekkora a gáz sűrűsége 10MPa nyomáson? | |||
:A: 25kg/m<sup>3</sup> | |||
:B: 100kg/m<sup>3</sup> | |||
:C: 125kg/m<sup>3</sup> | |||
:D: 85kg/m<sup>3</sup> | |||
:E: Egyik sem | :E: Egyik sem | ||
# Egy 110l térfogatú ballonban 0,8kg hidrogén (M=2g) és 1,6kg oxigén (M=32g) van. T = 20 °C Mekkora a keverék nyomása? | # Egy 110l térfogatú ballonban 0,8kg hidrogén (M=2g) és 1,6kg oxigén (M=32g) van. T = 20 °C Mekkora a keverék nyomása? | ||
<pre>a) 50kPa b) 500kPa c) 1MPa d) 10MPa e) Egyik sem </pre><pre> | <pre>a) 50kPa b) 500kPa c) 1MPa d) 10MPa e) Egyik sem </pre><pre> | ||
108. sor: | 110. sor: | ||
====4.==== | ====4.==== | ||
A kötél nem nyúlik, tehát a két testre ugyanakkora K kényszererővel fog hatni, valamint a két test gyorsulása ugyanakkora (abszolútértékű) lesz (és ellenkező előjelű). Így: <math> m_1 a_1=m_1 g-K</math>, <math> m_2 a_2 =m_2 g-K </math>, <math> a_1=-a_2 </math> Innen kifejezve K-t: <math> K=\frac{2g m_1 m_2}{m_1 + m_2}\approx 13.3N </math> | A kötél nem nyúlik, tehát a két testre ugyanakkora K kényszererővel fog hatni, valamint a két test gyorsulása ugyanakkora (abszolútértékű) lesz (és ellenkező előjelű). Így: <math> m_1 a_1=m_1 g-K</math>, <math> m_2 a_2 =m_2 g-K </math>, <math> a_1=-a_2 </math> Innen kifejezve K-t: <math> K=\frac{2g m_1 m_2}{m_1 + m_2}\approx 13.3N </math> | ||
====5.==== | |||
Legyenek a gáz adatai kezdetben <math> p_1,\; V_1,\; n_1 </math>, a tömeg és nyomás változása <math> \Delta m,\; \Delta p </math>, az egész folyamat közös hőmérséklete T, a gáz moláris tömege M, a nyomás, ahol sűrűséget mérünk <math> p_x </math>, és itt a sűrűsége <math> \rho </math>. Így <math> p_1 V_1=n_1 RT </math> és <math> (p_1-\Delta p)V_1=(n_1-\frac{\Delta m}{M})RT </math>. Kivonva a két egyenletet és átosztva: <math> \frac{M}{RT}=\frac{\Delta m}{V_1 \Delta p} </math>. A sűrűség: <math> \rho=\frac{m}{V}=\frac{nM}{nRT/p_x}=p_x \frac{M}{RT} </math>, innen a sűrűség a kívánt nyomáson <math> \rho=\frac{p_x \Delta m}{V_1 \Delta p}=100 \frac{kg}{m^3} </math> | |||