„Analízis (MSc) típusfeladatok” változatai közötti eltérés
| 222. sor: | 222. sor: | ||
4) <small>[2016ZH1]</small> Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként! | 4) <small>[2016ZH1]</small> Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként! | ||
{{Rejtett | |||
|mutatott='''Megoldás:''' | |||
|szöveg= | |||
<math>e^{3x}\delta''(x-2)(\varphi) = \delta''(x-2)(e^{3x}\varphi) = \delta(x-2)((e^{3x}\varphi)'') = \delta(x-2)((3e^{3x}\varphi + e^{3x}\varphi')') = </math> | |||
<math>= \delta(x-2)(9e^{3x}\varphi + 6e^{3x}\varphi' + e^{3x}\varphi'') = 9e^{6}\varphi(2) + 6e^{6}\varphi'(2) + e^{6}\varphi''(2) = (9e^{6}\delta(x-2) - 6e^{6}\delta'(x-2) + e^{6}\delta''(x-2))(\varphi)</math> | |||
}} | |||
<hr> | <hr> | ||
5) <small>[2016PZH]</small> Legyen u az <math>f(x) = x - 3</math> által generált reguláris disztribúció, <math>\psi(x) = e^{-x^2}</math>. Számítsuk ki <math>(\sigma_2\tau_3\delta' * u)\psi</math>-t! | 5) <small>[2016PZH]</small> Legyen u az <math>f(x) = x - 3</math> által generált reguláris disztribúció, <math>\psi(x) = e^{-x^2}</math>. Számítsuk ki <math>(\sigma_2\tau_3\delta' * u)\psi</math>-t! | ||
{{Rejtett | |||
|mutatott='''Megoldás:''' | |||
|szöveg= | |||
* Először szabaduljunk meg a konvulúciótól: | |||
<math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x))) = 1</math> | |||
* Majd értékeljük ki a disztribúciót (ez egy közismert integrál, de viszonylag nehéz kiszámolni): | |||
<math><1, e^{-x^2}> = \int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}</math> | |||
}} | |||
== Wavelet trafók == | == Wavelet trafók == | ||
A lap 2016. május 25., 12:45-kori változata
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
- Vegyük mindkét egyenlet Laplace trafóját ():
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
- Mátrixos alakra hozva:
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
- Az inverz laplacehoz bontsuk parciális törtekre:
- Együtthatókat összehasonlítva:
- Ahonnan:
- Vagyis
- Tehát a táblázat alapján
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
- Vegyük mindkét egyenlet Laplace trafóját:
- Átrendezve és mátrixos alakra hozva:
- Megoldás X-re:
- Parc törtek:
- Ahonnan:
- Inverz Laplace után:
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
- Számítsuk ki a tagok Laplace trafóját (x szerint):
- Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban):
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
- Számoljuk ki -et!
- Vegyük ennek az egyenletnek a végtelenben vett határértékét:
- Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben:
- Tehát:
- Amiből:
- Csináljuk meg ugyanezt -re!
- Vagyis:
- Amiből:
- Végül csináljuk meg ugyanezt -re!
- Itt a határérték picit bonyolultabb:
- Amiből:
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
- Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: )!:
- Átrendezve:
- Aminek a disztribúció értelemben vett megoldás Y-ra:
- Ha , akkor leoszthatunk vele.
- Ha , akkor , vagyis bármilyen konstans lehet, ezt jelöljük pl c-vel.
- Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a a nevezőben lévő s-be is nullát helyettesít):
- Vagyis:
- Aminek vegyük az inverz Fourier transzformáltját:
- Megjegyzés: A táblázatban szerepel , de nekünk inverz trafó kell
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
- Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint):
- Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet -ra):
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Vezessük be a jelölést!
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
- Nézzük meg, hogy egy függvényre hogyan viselkedik a feladatban szereplő disztribúció!
- Vagyis:
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
- Elődáson volt, hogy
- Ezt felasználva alkalmazzuk a disztribúciót a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
- Ha , akkor leoszthatunk vele, és azt kapjuk, hogy .
- Ha , akkor , vagyis bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel.
- Tehát ha , akkor , ha , akkor tetszőleges értékű, ez röviden:
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
- Először szabaduljunk meg a konvulúciótól:
- Majd értékeljük ki a disztribúciót (ez egy közismert integrál, de viszonylag nehéz kiszámolni):
Wavelet trafók
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy .
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
