„Analízis (MSc) típusfeladatok” változatai közötti eltérés
| 187. sor: | 187. sor: | ||
1) <small>[2015ZH1]</small> Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót! | 1) <small>[2015ZH1]</small> Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót! | ||
{{Rejtett | |||
|mutatott='''Megoldás:''' | |||
|szöveg= | |||
* Nézzük meg, hogy egy <math>\varphi</math> függvényre hogyan viselkedik a feladatban szereplő disztribúció! | |||
<math>(e^{3x-2}\delta'(x))(\varphi) = \delta'(x)(e^{3x-2} \varphi) = -\delta(x)(e^{3x-2} \varphi)' = -\delta(x)(3 \cdot e^{3x-2} \varphi + e^{3x-2} \varphi') = -3e^{-2} \varphi(0) - e^{-2} \varphi'(0) = (-3e^{-2}\delta(x) + e^{-2}\delta'(x))(\varphi)</math> | |||
* Vagyis: | |||
<math>e^{3x-2}\delta'(x) = -3e^{-2}\delta(x) + e^{-2}\delta'(x)</math> | |||
}} | |||
<hr> | <hr> | ||
2) <small>[2016ZH1]</small> Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math> | 2) <small>[2016ZH1]</small> Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math> | ||