„Analízis (MSc) típusfeladatok” változatai közötti eltérés
| 66. sor: | 66. sor: | ||
== Parcdiff egyenletek (Fourier) == | == Parcdiff egyenletek (Fourier) == | ||
1) Oldjuk meg Fourier módszerrel! | 1) Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | ||
<math>\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}</math> | <math>\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}</math> | ||
<math>u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x</math> | <math>u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x</math> | ||
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | |||
<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math> | |||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | |||
== Parcdiff egyenletek (véges differenciák) == | == Parcdiff egyenletek (véges differenciák) == | ||
| 78. sor: | 84. sor: | ||
<math>u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0</math> | <math>u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0</math> | ||
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha <math>x \in [0, 5], t \geq 0</math>, az x irányú távolság, h = 1. Mennyi lesz <math> u(2, \frac{1}{18})</math>? | |||
<math>\frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2}</math> | |||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | |||
== Nem lineáris egyenletek numerikus megoldása == | == Nem lineáris egyenletek numerikus megoldása == | ||
| 86. sor: | 98. sor: | ||
b) Használható-e a [4, 5] intervallumon az iteráció? | b) Használható-e a [4, 5] intervallumon az iteráció? | ||
2) [2016ZH2] Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | |||
== Lagrange multiplikátor módszer == | == Lagrange multiplikátor módszer == | ||
1) Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>x + 2y + 3z = 6</math> feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban! | 1) Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>x + 2y + 3z = 6</math> feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban! | ||
2) [2016ZH2] Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!) | |||
== Variáció számítás == | == Variáció számítás == | ||