„Számítógépes grafika házi feladat tutorial” változatai közötti eltérés
| 838. sor: | 838. sor: | ||
* A beesési szög kiszámításához szükségünk van a felületi normálra. Még jó, hogy korábban gondoltunk erre. A cos(theta) kiszámításának egy egyszerű módja a skaláris szorzat használata. Ugyanis definíció szerint u * v = |u| * |v| * cos(theta). De ha u-t és v-t úgy választjuk meg, hogy egységnyi hosszúak legyenek, akkor a skaláris szorzat a cos(theta)-t adja. Ha a cos(theta) negatív, akkor a test takarásban van, és az irányfény semmit nem befolyásol a színén. | * A beesési szög kiszámításához szükségünk van a felületi normálra. Még jó, hogy korábban gondoltunk erre. A cos(theta) kiszámításának egy egyszerű módja a skaláris szorzat használata. Ugyanis definíció szerint u * v = |u| * |v| * cos(theta). De ha u-t és v-t úgy választjuk meg, hogy egységnyi hosszúak legyenek, akkor a skaláris szorzat a cos(theta)-t adja. Ha a cos(theta) negatív, akkor a test takarásban van, és az irányfény semmit nem befolyásol a színén. | ||
Ezzel a modellel csak olyan anyagok jeleníthetőek meg jól, amikre egy felületi pont, konstans megvilágítás esetén mindig ugyanúgy néz ki, akárhonnan is nézzük. Ilyen anyag például a legtöbb műanyag, vagy mondjuk egy szivacs. Ez a modell kiegészítés nélkül nem működik az olyan anyagokra, amiken a fény megtud csillanni, vagy amikben látjuk a tükörképünket, és azokra se amiken átlátunk. | Ezzel a modellel csak olyan anyagok jeleníthetőek meg jól, amikre egy felületi pont, konstans megvilágítás esetén mindig ugyanúgy néz ki, akárhonnan is nézzük. Ilyen anyag például a legtöbb műanyag, vagy mondjuk egy szivacs. Ezek diffúz anyagok, a fényt minden irányba ugyan olyan intenzitással szórják. Ez a modell kiegészítés nélkül nem működik az olyan anyagokra, amiken a fény megtud csillanni, vagy amikben látjuk a tükörképünket, és azokra se amiken átlátunk. | ||
Ennek a modellnek egy lehetséges implementációja: | Ennek a modellnek egy lehetséges implementációja: | ||