„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés

David14 (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
70. sor: 70. sor:
==3. Feladat==
==3. Feladat==


Egy téglalap alakú, '''A x B''' méretű, '''I''' szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, '''a x b''' méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az '''A''' és '''a''' illetve '''B''' és '''b''' méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?
Egy téglalap alakú, <math>A \times B</math> méretű, <math>I</math> szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, <math>a \times b</math> méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az <math>A</math> és <math>a</math> illetve <math>B</math> és <math>b</math> méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?


{{Rejtett
{{Rejtett
76. sor: 76. sor:
|szöveg=  
|szöveg=  


Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása.
Ábra:
 
[[Fájl:Labor2 kép5.jpg]]
 
Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása:
 
 
<math> \Psi_2 = \sum_k  \Phi_k = \frac{\mu \cdot \hat{I} \cdot \cos (\omega t)}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) = </math>
 
 
<math> = \frac{\mu \cdot \hat{I} \cdot \cos (\omega t)}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] = </math>


<math> \Sigma \Phi = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) = </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] = </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>
<math> U_{\mathrm{i}} = - \frac{\partial\Phi}{\partial t} = - \frac{\mu \cdot \hat{I} \cdot (- \sin \omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] = </math>
<math> = \frac{\mu \cdot \hat{I}  \cdot \omega \cdot \sin \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>


<math> L_{\mathrm{k}} = \frac{\Phi}{I} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos (\omega t)}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>


[[Fájl:Labor2 kép5.jpg]]
 
A belső vezetőkeretben indukált feszültség a Faraday-féle indukciós térvénnyel egyszerűen számítható:
 
 
<math> U_{\mathrm{i}} = - \frac{\partial\Psi_2}{\partial t} = \frac{\mu \cdot \hat{I} \cdot  \sin (\omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] = </math>
 
 
A kölcsönös induktivitás definíció szerint számítható:
 
 
<math> M = \frac{\Psi_2}{I_1} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>


}}
}}