„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés
| 70. sor: | 70. sor: | ||
==3. Feladat== | ==3. Feladat== | ||
Egy téglalap alakú, | Egy téglalap alakú, <math>A \times B</math> méretű, <math>I</math> szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, <math>a \times b</math> méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az <math>A</math> és <math>a</math> illetve <math>B</math> és <math>b</math> méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás? | ||
{{Rejtett | {{Rejtett | ||
| 76. sor: | 76. sor: | ||
|szöveg= | |szöveg= | ||
Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása | Ábra: | ||
[[Fájl:Labor2 kép5.jpg]] | |||
Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása: | |||
<math> \Psi_2 = \sum_k \Phi_k = \frac{\mu \cdot \hat{I} \cdot \cos (\omega t)}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) = </math> | |||
<math> = \frac{\mu \cdot \hat{I} \cdot \cos (\omega t)}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] = </math> | |||
<math> | <math> = \frac{\mu \cdot \hat{I} \cdot \cos (\omega t)}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)} \right] </math> | ||
[[ | |||
A belső vezetőkeretben indukált feszültség a Faraday-féle indukciós térvénnyel egyszerűen számítható: | |||
<math> U_{\mathrm{i}} = - \frac{\partial\Psi_2}{\partial t} = \frac{\mu \cdot \hat{I} \cdot \sin (\omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)} \right] = </math> | |||
A kölcsönös induktivitás definíció szerint számítható: | |||
<math> M = \frac{\Psi_2}{I_1} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)} \right] </math> | |||
}} | }} | ||