„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés
34. sor: | 34. sor: | ||
==2. Feladat== | ==2. Feladat== | ||
Egy végtelen hosszú, | Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezető síkjában egy téglalap alakú, <math>a \times b</math> méretű vezetőkeret helyezkedik el. A vezetőkeret <math>a</math> méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget! | ||
{{Rejtett | {{Rejtett | ||
40. sor: | 40. sor: | ||
|szöveg= | |szöveg= | ||
Ábra: | |||
[[Fájl:Labor2 kép4.jpg]] | |||
A Faraday-féle indukciós törvény felhasználásával: | |||
<math> = \frac{a \cdot \ | <math> U_{\mathrm{i}} = - \frac{\partial\Phi}{\partial t} = | ||
- \frac{\mathrm{d}}{\mathrm{d} t} \int_A\limits \vec{B} \; \mathrm{d}\vec{s} = | |||
- a \cdot \frac{\mathrm{d}}{\mathrm{d} t} \int_d^{d+b}\limits {B}(r) \; \mathrm{d}r = | |||
- a \cdot \frac{\mathrm{d}}{\mathrm{d} t} \int_d^{d+b}\limits \frac{\mu \cdot \hat{I}\cos (\omega t)}{2 r \pi} \; \mathrm{d}r =</math> | |||
<math>= | |||
\frac{a \mu}{2 \pi}\int_d^{d+b}\limits \frac{\mathrm{d}}{\mathrm{d}t} \left(- \hat{I}\cos (\omega t) \right) \cdot \frac{1}{r}\;\mathrm{d}r = | |||
\frac{a \mu \cdot \omega \cdot \hat{I}\sin (\omega t)}{2 \pi} \int_d^{d+b}\limits \frac{1}{r} \; \mathrm{d} r = | |||
</math> | |||
[ | |||
<math>\frac{a \mu \omega \cdot \hat{I} \sin (\omega t)}{2 \pi} \cdot \left[ \ln (r) \right]_d^{d+b}= | |||
\frac{a \mu \omega \cdot \hat{I} \sin (\omega t)}{2 \pi} \cdot \ln \left( {\frac{d+b}{d}} \right)</math> | |||
Az integrálást tehát csak a <math>b</math> oldal szerint végezzük el, mivel <math>a</math> oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől <math>d</math>. | |||
}} | }} |
A lap 2014. február 3., 01:45-kori változata
1. Feladat
Egy végtelen hosszú, szinuszos áramot szállító vezetőtől távolságban lévő pontban határozza meg a térerősséget és a indukciót!
Ampere-féle gerjesztési törvényt felírva egy olyan zárt L görbére, amely által kifeszített, a vezetékre merőleges A körlapot a vezeték pont a közepén döfi át:
Szimmetria okokból, a mágneses térerősségvektorok a görbe mentén mindenhol érintő irányúak, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Az elektromos eltolásvektor időbeli változása zérus, az áramsűrűségvektor pedig merőleges az A körlapra, a felületintegrál eredménye az A körlapon átfolyó áramerősség:
2. Feladat
Egy végtelen hosszú, szinuszos áramot szállító vezető síkjában egy téglalap alakú, méretű vezetőkeret helyezkedik el. A vezetőkeret méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!
3. Feladat
Egy téglalap alakú, A x B méretű, I szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, a x b méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az A és a illetve B és b méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?
4. Feladat
Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!
5. Feladat
Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!
6. Feladat
Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!
A CD11.4599.151 típusú szűrővel rendelkező hálózati csatlakozó 2 pólusú kapcsolója lengő vezetéken helyezkedik el. Névleges áramerőssége 1A, általános célú berendezésekbe tervezték, 1 pólusú beépített olvadóbiztosítékkal.
A belső elemek értékei: L= 2 x 10 mH, Cx = 68 nF, Cy = 2,2 nF.
A Cx és Cy kondenzátorok szigorú szabványok alapján tervezett, öngyógyuló dielektrikumos fóliakondenzátorok.
A szűrő kettős feladatot lát el:
- Az eszközre jutó feszültségcsúcsok ellen véd, amelyet elektromechanikus kapcsolók ill. relék okozhatnak
- Ugyanez a szűrő a másik irányban is működik, az eszköz által keltett nagyfrekvenciás zavarokat csillapítja
A zavarok fajtái:
A) Feszültségingadozások
B) Harmónikus frekvenciájú inerferencia (100 Hz - 2 kHz)
C) Tranziensek által okozott interferencia (300 MHz-ig)
D) Szinusz szerű zavarok (akár 1 GHz-ig)
A szűrők alkotóelemei általában kondenzátorok és tekercsek, de gyakran alkalmaznak kondenzátor-kisütő ellenállásokat, túlfeszültség-védőket és igen nagyfrekvenciás fojtókat is. Emiatt a szűrő általában több egymást követő fokozatból áll.
A zavarok terjedhetnek közvetlen vezetéssel, kapacitív és induktív csatolással valamint sugárzással.
A zavarokat feloszthatjuk közös és differenciális módusú zavarokra. Földeletlen zavarforrásból származó zavaró jel a tápáramhoz hasonló módon, az egyik vezetéken befolyik az eszközbe, a mmásikon pedig ki. Ezt nevezzük differenciális módusú zavaró jelnek. A közös módusú zavar ezzel szemben (a mechanikai kialakítás következtében) mindkét tápvezetéken folyik be az eszközbe, és a földelésen folyik vissza a zavarforráshoz.
A közös módusú zavarok csillapítása --> ld. 7. kérdés
A differenciális módusú zavarokat a fojtó csak kismértékben csillapítja (ld. 7. kérdés), ezért van szükség a Cy kondenzátorok beépítésére, amelyek viszont a védővezetőbe folyó (ún. szivárgási) áramot okoznak. Ha a szivárgási áramra vonatkozó követelmény szigorú, ezeket el kell hagyni (pl. orvosi célú szűrők, melyekben a nagy Cx kapacitás kisütésére még egy ellenállást is beépítenek, hogy a táplálatlan szűrő kimenetén ne maradhasson fenn az üzemi feszültség).7. Feladat
A szűrő közös vasmagon elhelyezett két tekercsének milyen a menetirányítása és miért?
A szűrő egy rádiófrekvenciás áramkompenzált fojtó (angolul RF Current Compensated Suppression Choke). A tekercsei úgy vannak irányítva, hogy a rajtuk folyó üzemi áramok által létrehozott fluxusok ellentétes irányúak legyenek, így kioltsák egymást. Ezek alapján, az áramirányok figyelembevételével mondhatjuk, hogy a tekercsek menetirányítása ellentétes.
Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes.
8. Feladat
Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!
9. Feladat
Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!
10. Feladat
Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!
11. Feladat
Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!
Ideális eset: (szivárgási induktivitás) --> a csillapítás végtelen, a kimeneti feszültség bármely bemeneti feszültség esetén zérus. //-> Ez szerintem (Prímás) nem igaz, már csak a képletből kiindulva sem: ha Lsz = 0, akkor a csillapítás 1, így Ube = Uki, ami szépen látszik is a kapcsolási rajzon.
Valóságban: .
A gyakorlatban adott frekvencián adott, ebből , majd a képlettel számítható.
12. Feladat
Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek?
A vonalszerű vezetőben folyó áram által létrehozott mágneses térerősséget az általánosított Biot-Savart törvény adja meg:
Ebből kiolvasható, hogy az összefüggés első tagja az árammal arányos és a távolság négyzetével fordítottan arányos. A mágneses térerősségnek e tag által leírt komponensét közeltérnek vagy közeli térnek nevezzük.
Az összefüggés második tagja ellenben az áram idő szerinti deriváltjával arányos, és a távolsággal (és nem a négyzetével) fordítottan arányos. Ezt az összetevőt távoltérnek vagy távoli térnek nevezzük.
Tehát a vezetőhöz közel a közeli, messze a távoli tér a domináns. Az áram idő szerinti deriváltjával való arányosság szemléletesen úgy is leírható, hogy adott nagyságú áram esetén adott távolságra a vezetéktől a távoltér annál nagyobb a közeltérnél, minél nagyobb az I áram frekvenciája. Tehát előírt erőteret annál kisebb árammal tudunk létrehozni, minél nagyobb frekvenciát választunk.
H ismeretében konkrét esetben E rotációképzéssel számítható, de E -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és -rel arányos, egy közeli, az árammal és -tel arányos összetevője, de van még egy harmadik, még közelebbi, szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is.
Fájl:Labor2 kép12.jpg