„Bode-diagram kézi rajzolása” változatai közötti eltérés
94. sor: | 94. sor: | ||
Jelen esetünkben azonban 1 integrátor van, tehát az integrátor egyenese (vagy annak meghosszabbítása) K=2-nél metszi a <math>\omega</math> tengelyt. Mivel azonban <math>\omega=1</math>-nél az integrátor egyenesének kezdeti -20 dB/dek meredekségéhez -20 dB/dek hozzáadódik a képletnek megfelelően, tehát még <math>\omega=2</math> előtt -40 dB/dek lesz a meredeksége, így a tényleges amplitúdó görbe nem 2-nél, hanem egy annál kisebb értéknél metszi az <math>\omega</math> tengelyt! | Jelen esetünkben azonban 1 integrátor van, tehát az integrátor egyenese (vagy annak meghosszabbítása) K=2-nél metszi a <math>\omega</math> tengelyt. Mivel azonban <math>\omega=1</math>-nél az integrátor egyenesének kezdeti -20 dB/dek meredekségéhez -20 dB/dek hozzáadódik a képletnek megfelelően, tehát még <math>\omega=2</math> előtt -40 dB/dek lesz a meredeksége, így a tényleges amplitúdó görbe nem 2-nél, hanem egy annál kisebb értéknél metszi az <math>\omega</math> tengelyt! | ||
Az integrátor egyenese <math>\omega=1</math> körfrekvencián <math>log\left( { 2\over 1 } \right) dek \cdot 20 {db \over dek} = 6 dB</math> értéket vesz fel, hiszen <math>log\left( { 2\over 1 } \right)</math> dekád távolság van az 1 és 2 körfrekvencia értékek között, és <math>-20 {db \over dek}</math> az integrátor egyenesének meredeksége. Tudjuk, hogy a tényleges amplitúdó görbe <math>\omega=1</math> körfrekvenciától <math>-40 {db \over dek}</math> meredekséggel halad, tehát kiszámíthatjuk, hogy az amplitúdó görbe <math>1 + {6 dB \over 40 {dB \over dek}} = 1+0.15=1.15</math>-nél metszi az <math>\omega</math> tengelyt. | Az integrátor egyenese <math>\omega=1</math> körfrekvencián <math>log\left( { 2\over 1 } \right) dek \cdot 20 {db \over dek} = 6 dB</math> értéket vesz fel, hiszen <math>log\left( { 2\over 1 } \right)</math> dekád távolság van az 1 és 2 körfrekvencia értékek között, és <math>-20 {db \over dek}</math> az integrátor egyenesének meredeksége. Tudjuk, hogy a tényleges amplitúdó görbe <math>\omega=1</math> körfrekvenciától <math>-40 {db \over dek}</math> meredekséggel halad, tehát kiszámíthatjuk, hogy az amplitúdó görbe <math>1 + {6 dB \over 40 {dB \over dek}} = 1+0.15 dek = 1 \cdot 10^{0.15}=1.412 \approx \sqrt{2}</math>-nél metszi az <math>\omega</math> tengelyt. | ||
Előfordul még olyan eset is, amikor az amplitúdó görbe duplán törik az integrátor egyenesének tengelymetszete előtt, méghozzá úgy hogy például -20 dB/dek-ről vízszintes szakaszba megy át, majd újra -20 dB/dek-re törik le. Ilyenkor a vágási körfrekvencia annyi dekáddal nagyobb az integrátor egyenesének tengelymetszeti pontjánál, ahány dekád széles az amplitúdó görbe vízszintes szakasza. | |||
Általánosan elmondható, hogy érdemes először lerajzolni a görbe menetét és logikázni az ismert pontok alapján. Geometriai úton legtöbb esetben kihozható egy ismert tengelymetszetből a vágási körfrekvencia, azonban figyelni kell hogy az Y tengely dB skálában van, míg az X tengely pedig dekád skálában. | |||
Felhasználható azonosság még, hogy az integrátor egyenese (vagy annak meghosszabbítása) <math>\omega=1</math> körfrekvencián <math>20 \cdot log(K)</math> értéket vesz fel dB-ben. | |||
=== 6. Amplitúdó-körfrekvencia görbe felrajzolása: === | === 6. Amplitúdó-körfrekvencia görbe felrajzolása: === |