„Számítógépes grafika házi feladat tutorial” változatai közötti eltérés

Kiskoza (vitalap | szerkesztései)
Rohamcsiga (vitalap | szerkesztései)
26. sor: 26. sor:
*** pl.: glDrawElementsInstancedBaseVertexBaseInstance() - amúgy ez a leghosszabb nevű OpenGL függvény, de a tárgyból nincs rá szükség.
*** pl.: glDrawElementsInstancedBaseVertexBaseInstance() - amúgy ez a leghosszabb nevű OpenGL függvény, de a tárgyból nincs rá szükség.
* A grafikában a lebegőpontos számokkal float alakban szeretünk dolgozni. A double-el nem az a gond, hogy kétszer annyi helyet foglal, hanem hogy a double pontosságú műveletvégzés sokkal lassabb, mint ha megelégednénk a float által elvárt pontossággal. Ez az oka annak, hogy a videókártyák, kb 2011-ig csak floatokkal tudtak számolni (double-el csak szoftveresen emulálva, nagyjából 25-ször olyan lassan). Az OpenGL-nek az a verziója, amit a tárgyban kell használni (1.1), csak floatokkal tud dolgozni a videókártyán, ami azt jelenti, hogy ha double-t adsz neki, attól nem csak, hogy nem lesz pontosabb, de még plusz munkát is adsz neki ezzel, mert neki vissza kell kasztolni a számot floattá, és ez a kasztolás nagyon nincs ingyen. A floatok használatának egy további előnye, hogy az x86 processzorok 4 db float műveletet tudnak egyszerre elvégezni SSE-vel. Ez az oka annak, hogy a tárgyból a legtöbb függvénynek csak a floatot váró alakját lehet használni, például a glVertex3f-et lehet, de a glVertex3d-t nem.
* A grafikában a lebegőpontos számokkal float alakban szeretünk dolgozni. A double-el nem az a gond, hogy kétszer annyi helyet foglal, hanem hogy a double pontosságú műveletvégzés sokkal lassabb, mint ha megelégednénk a float által elvárt pontossággal. Ez az oka annak, hogy a videókártyák, kb 2011-ig csak floatokkal tudtak számolni (double-el csak szoftveresen emulálva, nagyjából 25-ször olyan lassan). Az OpenGL-nek az a verziója, amit a tárgyban kell használni (1.1), csak floatokkal tud dolgozni a videókártyán, ami azt jelenti, hogy ha double-t adsz neki, attól nem csak, hogy nem lesz pontosabb, de még plusz munkát is adsz neki ezzel, mert neki vissza kell kasztolni a számot floattá, és ez a kasztolás nagyon nincs ingyen. A floatok használatának egy további előnye, hogy az x86 processzorok 4 db float műveletet tudnak egyszerre elvégezni SSE-vel. Ez az oka annak, hogy a tárgyból a legtöbb függvénynek csak a floatot váró alakját lehet használni, például a glVertex3f-et lehet, de a glVertex3d-t nem.
* Az OpenGL RGB színskálán állítja elő a képet, és neki is RGB érétéket kell adni, ha egy színt akarunk leírni. A grafikában jobban szeretünk a (-végtelen, végtelen) tartományon dolgozni a színekkel, ezért általában nem a megszokott egy byte-on (0,255) specifikáljuk a színeket, hanem inkább floatként kezeljük őket a (0, 1) - vagy a (-1, 1) - tartományon. Ennek az az oka, hogy így jóval nagyobb fényerősség beli különbségek is megjeleníthetőek, két teljesen fehér fény összegeként kaphatunk egy fényesebb fehéret, amit csak a rajzolási fázis legvégén konvertálunk vissza a (0, 255) tartományra. Technikailag byte-ot is lehet adni az OpenGL-nek, de pedagógia okokból a házikban kötelező float színeket használni.
* Az OpenGL RGB színskálán állítja elő a képet, és neki is RGB érétéket kell adni, ha egy színt akarunk leírni. A grafikában általában nem a megszokott komponensenként egy byte-on (0, 255) specifikáljuk a színeket. Ezzel alapvetően az baj, hogy a színhez tartozó fényerősség csak nagyon kis tartományon változhat, ahhoz képest amekkora különbségek a valóságban előfordulnak, pl. a Nap színe, vagy éjszaka egy sötét szobának a színei között több mint 10000-szeres fényerősségbeli különbség van. A másik gond, hogy a byte színekkel nehéz műveletet végezni, pl. a valóságban két fehér fény összege egy még fényesebb fehér, míg az egy bájton leírt színeknél a fehér már önmagából a lehető legvilágosabb szín, amit meg tudunk jeleníteni. Ennek az orvoslására a színeket komponensenként floatokkal írjuk le. Nem véletlen egybeesés, hogy a megvilágítást a videókártya számolja az OpenGL-ben, ami mint tudjuk, floatokkal szeret dolgozni. Egy fényt két dolog is jellemez, az egyik a színe (hullámhosza), ami jelen esetben az RGB komponensek aránya. Ha csak ezt akarjuk megadni, akkor a komponenseket a (0, 1) tartományon írjuk le. De a fényt jellemzi még az erőssége (luminanciája) is, ami független magától a színtől. A fényerősség tetszőlegesen nagy, vagy kicsi, de akár még negatív is lehet. Ha egy fényforrást akarunk leírni, akkor a szín és a fényerősség szorzatára vagyunk kíváncsiak, a (-végtelen, végtelen) tartományon komponensenként (erre a sugárkövetésnél lesz szükség), de ha az OpenGL-nek akarunk megadni egy színt, akkor azt a (0, 1), esetleg a (-1, 1) tartományon tegyük. Technikailag byte-ot is lehet adni az OpenGL-nek, de pedagógia okokból a házikban kötelező float színeket használni.
* Az OpenGL csak a rajzolással foglalkozik, az, hogy hogyan jön létre az a valami (célszerűen egy ablak), amire ő tud rajzolni, az viszont már nem az ő dolga. Itt jön a képbe a GLUT.
* Az OpenGL csak a rajzolással foglalkozik, az, hogy hogyan jön létre az a valami (célszerűen egy ablak), amire ő tud rajzolni, az viszont már nem az ő dolga. Itt jön a képbe a GLUT.