„Matematika A1 - Vizsga: 2007.01.23” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
|||
13. sor: | 13. sor: | ||
<math>z^4=\frac{-16j-12}{3+4j}=\frac{-4*(3+4j)}{3+4j}=-4</math> | <math>z^4=\frac{-16j-12}{3+4j}=\frac{-4*(3+4j)}{3+4j}=-4</math> | ||
Mivel a komplex síkon a (-4;0) koordinátájú pontba mutató helyvektor forgásszöge <math>\pi</math> és nagysága 4, így: | |||
<math>z^4=-4=-4+0*j=4*(cos\pi+j*sin\pi)</math> Mert | |||
Ebből kell most negyedik gyököt vonni: | Ebből kell most negyedik gyököt vonni: |
A lap 2014. január 17., 22:25-kori változata
1. Adja meg az összes olyan komplex számot, melyre .
Végezzük el először a -vel való beszorzást.
Mivel a komplex síkon a (-4;0) koordinátájú pontba mutató helyvektor forgásszöge és nagysága 4, így:
Mert
Ebből kell most negyedik gyököt vonni:
ahol2. Határozza meg az alábbi határértékeket!
a,
b,
a,
3. Melyik igaz, melyik nem:
a, Ha folytonos -n, akkor korlátos -n
b, Ha folytonos -n, akkor korlátos -n
c, Ha folytonos -n, akkor véges sok pont kivételével deriválható -n
d, Ha értelmezett és véges sok pont kivételével deriválható -n akkor folytonos itt
e, Ha deriválható -n, akkor folytonos -n
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)4. Hány megoldása van az egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!
Mivel 13-ad fokú egyenletet nem tudunk megoldani, függvényvizsgálattal kell megkeresni a megoldásokat. A feladat ekvivalens a következővel:
Hány zérushelye van az egyenletnek?
Deriváljuk a függvényt először:
Ahol a derivált nulla, ott lokális szélsőértéke van a függvénynek.
, ebből vagy
Most megnézzük, hogy ezek maximum vagy minimum helyek. Ezt a második derivált segítségével tudjuk megnézni, amibe ha vissza helyettesítjük az x-et, akövetkezőt tudjuk meg: ha f(x)>0 a függvény konvex, és minimuma van, ha f(x)<0, a függvény konkáv, és maximuma van.
, ebből és , tehát -1-ben lokális maximuma, 1-ben lokális minimuma van.
Így igaz a következő intervallumon szig. mon. nő, -on szig.mon. csökken, -on szig. mon. nő.
Emiatt lehet 1,2 vagy 3 zérushelye, amit a következőképpen derítünk ki:
és -ből és az előzőekből következik, hogy -1 és 1 között van zérushely, továbbá, hogy -1 előtt és 1 után is van egy-egy.
Most már csak a -1 és 1 közötti zérushely előjelét kell eldönteni, legkönnyebb így: , tehát -1 és 0 közt van a zérushely, így előjele negatív.
Tehát az egyenletnek 3 megoldása van, két negatív és egy pozitív.
A megoldás kicsit hosszadalmas lett, amennyiben tudsz egyszerűbbet rakd fel nyugodtan ezután.
-- r.crusoe - 2008.01.14.
Az egyenletből egyébként ránézésre látszik, hogy egyáltalán van-e megoldása.. Ugyanis: páratlan fokú, tehát biztos átmegy az abszcisszán.
-- Gyurci - 2008.05.27.
Vizsgatapasztalat: Ha lehet 3 gyök és a végén kijön, hogy van is, akkor oda kell írni, hogy ez Bolzano miatt van. Itt persze a lényeg az, hogy ha pozitívból negatívba megyünk (vagy fordítva), és a fv. folytonos, akkor muszáj átmennünk az x tengelyen, tehát kell lennie gyöknek. Ez a függvény pedig folytonos, mert folytonosakból raktuk össze.
-- Gyurci - 2008.01.14.5. Határozza meg az alábbi integrál értékét!
Parciálisan fogunk integrálni, beviszünk az integrálba egy 1-es szorzót, ez lesz , és .
-et az előző módszerrel integráljuk:
6. Határozza meg az alábbi határértéket!
Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:
Most ezt visszahelyettesítjük:
Mert, .
A második kifejezést pedig 2-szer L'Hospital-juk:
Így a feladat megoldása:
A feladatokat le kellene ellenőrizni + hozzáadni a 3. feladat megoldását.