„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
241. sor: | 241. sor: | ||
{{Rejtett | {{Rejtett | ||
|mutatott='''Megoldás''' | |mutatott='''Megoldás''' | ||
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, | |szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők. | ||
249. sor: | 249. sor: | ||
Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a 2. képletet négyzetre emelve, majd rendezve kapjuk: | |||
<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math> | <math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math> | ||
258. sor: | 258. sor: | ||
<math> Z0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math> | <math> Z0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math> | ||
A gyökvonás elvégzése után az eredményt megadó formula | A gyökvonás elvégzése után az eredményt megadó formula: | ||
<math> Z0 = \frac{j \omega \mu}{\gamma}</math> | <math> Z0 = \frac{j \omega \mu}{\gamma}</math> | ||
A kifejezésben szereplő konstansok értéke a feladat szövegében adott. Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (s<sup>-1</sup> és m<sup>-1</sup>), ill. figyeljünk hogy μ=μ<sub>0</sub>*μ<sub>r</sub> | A kifejezésben szereplő konstansok értéke a feladat szövegében adott, Z0 hullámellenállás meghatározható. Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (s<sup>-1</sup> és m<sup>-1</sup>), ill. figyeljünk hogy μ=μ<sub>0</sub>*μ<sub>r</sub> | ||
}} | }} |
A lap 2014. január 15., 00:37-kori változata
Itt gyűjtjük a szóbeli vizsgán húzható számolási feladatokat. A bennük szereplő számadatok nem túl lényegesek, mivel a vizsgán is csak a számolás menetére és elméleti hátterére kíváncsiak.
Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletes megoldással is.
Már az is nagy segítség, ha legalább az általad húzott feladat PONTOS szövegét és SORSZÁMÁT beírod ide! Sablon:Noautonum
42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása
Stacionárius áramlási térben az áramsűrűség . Mekkora a z-tengellyel 60°-os szöget bezáró felületen átfolyó áram?
A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát. A J áramsűrűség-vektor z irányú, nekünk a felületre normális komponensével kell számolnunk.
, esetünkben50. Feladat: Két áramjárta vezető közötti erőhatás
Két egymással párhuzamos végtelen hosszú vezető egymástól 4m távolságban. Az egyiken 2A, a másikon 3A folyik. Mekkora erő hat az egyik vezeték 1 m-es szakaszára?
Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.
H-t egy kör vonalán integráljuk, aminek a középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.
Tudjuk még, hogy vákuumban.
A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:
, ahol I a konstans áramerősség, l pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.
Innen a megoldás:
Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, akkor taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:
52. Feladat: Két toroid tekercs kölcsönös indukciója
Egy toroidra két tekercs van csévélve, az egyik menetszáma , a másiké . A toroid közepes sugara , keresztmetszetének felülete , relatív permeabilitása . Határozza meg a két tekercs kölcsönös induktivitását!
A kölcsönös induktivitás definíció szerint:
58. Feladat: Toroid tekercs fluxusa és energiája
Hányszorosára változik egy L önindukciós együtthatóval rendelkező I1 = 2A árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan I2 = 5A -re növeljük? Hányszorosára változik a tekercs mágneses mezejében tárolt energia?
Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.
Egy bármilyen tekercs fluxusa az képletből számolható. Ez alapján a toroid fluxusváltozása:
Egy bármilyen tekercs energiája számolható a képlet alapján. Tehát a toroid energiaváltozása:65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség
Egy r = 0.09m sugarú vékony falú rézcső belsejében, a tengelytől d = 0.03m távolságra, azzal párhuzamosan egy vékony rézvezeték helyezkedik el. Mindkét vezető elég hosszú és I = 5A nagyságú egyenáram folyik bennük, de ellenkező irányban. Mekkora az eredő mágneses térerősség nagysága a tengelyben?
A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.
Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített síkon csakis a vékony rézvezeték árama megy át.
Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
78. Feladat: Ideális távvezeték állóhullámarányának számítása
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az függvény szerint változik. Adja meg az állóhullámarányt!
A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad --> - j*béta*z ) és a reflektált (negatív irányba halad --> + j*béta*z ) komponenseinek komplex amplitúdói:
Megjegyzés: A feladat megadható úgy is, hogy U(x) függvényt adják meg. Ekkor a beeső komponenshez (U2+) tartozik a pozitív, a reflektálthoz (U2-) pedig a negatív hatványkitevő!
Kapcsolat a két fajta paraméterezés között:
Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti "x" paraméterezéssel, majd ebből "z" szerinti paraméterezéssel:
Ebből pedig már számolható a távvezeték állóhullámaránya:
81. Feladat: Távvezeték megadott feszültségű pontjának meghatározása
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: és . Egy egyenfeszültségű feszültség forrást kapcsolunk rá. Határozza meg azt a z távolságot, ahol a feszültség lesz!
Első körben meg kell határoznunk, hogy mennyi a távvezeték csillapítása (alfa), feltéve hogy omega=0, mivel egyenfeszültséggel gerjesztjük a távvezetéket:
Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:
86. Feladat: Ideális távvezeték feszültségének számítása
Adott egy ideális távvezeték, melynek hullámimpedanciája , hossza pedig . A távvezeték végén adott az áram és a feszültség komplex amplitúdója: illetve . Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején.
Tudjuk, hogy így
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:
94. Feladat: Zárt vezetőkeretben indukált áram
Egy ellenállású zárt vezetőkeret fluxusa , ahol . Mekkora a keretben folyó áram effektív értéke?
Az indukálási törvény alapján:
Behelyettesítve a körfrekvencia értékét:
Innen a feszültség effektív értéke:
Az áram effektív értéke pedig:98. Feladat: Zárt vezetőhurokban indukált feszültség
Az xy síkon helyezkedik el egy 3m sugarú, kör alakú, zárt l görbe. A mágneses indukció a térben homogén, z irányú komponense 40ms idő alatt 0.8T értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az l görbe mentén?
107. Feladat: Hengeres vezetőben disszipált hőteljesítmény
Egy keresztmetszetű, 3m hosszú hengeres vezetőben 10A amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység , a fajlagos vezetőképesség pedig . Mennyi a vezetőben disszipált hőteljesítmény?
A vezető sugara:
Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima "l" hosszúságú, "A" keresztmetszetű és "szigma" fajlagos vezetőképességű vezetékdarabnak.
A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):
109. Feladat: Hengeres vezető belsejében az elektromos térerősség
Egy 2mm sugarú, hosszú hengeres vezető 35 MS/m fajlagos vezetőképességű anyagból van, a behatolási mélység 80µm. A térerősség időfüggvénye a vezető felszínén . Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos. Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
Mivel:
Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:
A differenciális Ohm-törvény:
Ezeket egybefésülve és áttérve időtartományba:
Behelyettesítés után mélységben:111. Feladat: Behatolási mélység
Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!
terjedési együttható
- csillapítási tényező
- fázistényező
behatolási mélység
Vezető anyagokban , mivel:
, azonban vezető anyagokban , így a terjedési együttható:
Ebből számításának módja:
(de most nem ezt kell használni)
A térerősség amplitúdójának nagysága a vezetőben:
119. Feladat: Hullámellenállás számítása
Egy adott μr relatív permeabilitású közegben síkhullám terjed ω=... s-1 körfrekvenciával. A terjedési együttható értéke ismert, γ=... mm-1. Adja meg a közeg hullámellenállásának értékét!
A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.
Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a 2. képletet négyzetre emelve, majd rendezve kapjuk:
Behelyettesítés után:
A gyökvonás elvégzése után az eredményt megadó formula:
143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény
Egy Hertz-dipólus az origó síkjában szögben áll. Írja fel az összes kisugárzott teljesítményt tartományban a Poynting-vektor és a Hertz-dipólus irányhatásának segítségével!
A Hertz-dipólus által kisugárzott teljes teljesítmény:
A megadott tartomány az xy sík feletti félteret írja le. Mivel a Hertz-dipólus iránykarakterisztikája az xy síkra szimmetrikus, így a felső féltérbe a teljes teljesítmény fele sugárzódik ki.
149. Feladat: Koaxiális kábelben áramló teljesítmény
Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:<br\> (ahol a radiális irányú egységvektor), <br\> (ahol a fi irányú egységvektor).<br\> Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r1, a külső vezető belső sugara r2, a vezetők ideálisak, a kábel tengelye a z irányú.