„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés

Arklur (vitalap | szerkesztései)
Arklur (vitalap | szerkesztései)
268. sor: 268. sor:
Az '''NP teljes''' problémák azok, amik NP nehezek és NP-beliek is egyszerre. A fenti dolog ide is érvényes, vagyis jó dolog ha sok nevezetes NP teljes problémát ismerünk, mert ha egy ismeretlen problémához találunk egy olyan Karp-redukciót, ami alapján az ismeretlen problémánkat visszavezethetjük egy közismert NP teljes problémára, akkor az ismeretlen problémánkról is kiderült, hogy NP teljes. <br><br>
Az '''NP teljes''' problémák azok, amik NP nehezek és NP-beliek is egyszerre. A fenti dolog ide is érvényes, vagyis jó dolog ha sok nevezetes NP teljes problémát ismerünk, mert ha egy ismeretlen problémához találunk egy olyan Karp-redukciót, ami alapján az ismeretlen problémánkat visszavezethetjük egy közismert NP teljes problémára, akkor az ismeretlen problémánkról is kiderült, hogy NP teljes. <br><br>


<big>'''(''Nem kérdezték, csak kieg.'') Karp-redukció?'''<br><br></big>
<big>'''Karp-redukció?'''<br><br></big>
Van egy olyan gépünk, ami kizárólag B problémát tudja megoldani. Nekünk viszont A problémánk van. Ekkor ha szerencsénk van, akkor fogunk találni egy olyan Karp-redukciót, hogy A<big>≺</big>B. Ennek persze vannak feltételei. Az A eldöntési probléma inputját át kell alakítani B eldöntési probléma inputjává, és meg is kell adni ezt a függvényt, nevezzük el ezt a függvényt f függvénynek. Feltétel, hogy f függvény polinom időben kiszámolható legyen, és ezt be is kell bizonyítani. Továbbá azt is be kell bizonyítani, hogy amennyiben a normális inputra A azt válaszolná, hogy IGEN, akkor az f(normális input)-ra a B szintén ugyanezt válaszolná (és ugyanezt be kell bizonyítani NEM válaszra is). Magyarul a B dolgot megoldó gépet megerőszakoljuk hogy A problémát is hajlandó legyen megoldani. <br><br>
Van egy olyan gépünk, ami kizárólag B problémát tudja megoldani. Nekünk viszont A problémánk van. Ekkor ha szerencsénk van, akkor fogunk találni egy olyan Karp-redukciót, hogy A<big>≺</big>B. Ennek persze vannak feltételei. Az A eldöntési probléma inputját át kell alakítani B eldöntési probléma inputjává, és meg is kell adni ezt a függvényt, nevezzük el ezt a függvényt f függvénynek. Feltétel, hogy f függvény polinom időben kiszámolható legyen, és ezt be is kell bizonyítani. Továbbá azt is be kell bizonyítani, hogy amennyiben a normális inputra A azt válaszolná, hogy IGEN, akkor az f(normális input)-ra a B szintén ugyanezt válaszolná (és ugyanezt be kell bizonyítani NEM válaszra is). Magyarul a B dolgot megoldó gépet megerőszakoljuk hogy A problémát is hajlandó legyen megoldani. <br><br>