„Fizika1 vizsga 2008.01.30” változatai közötti eltérés

Lordviktor (vitalap | szerkesztései)
Lordviktor (vitalap | szerkesztései)
46. sor: 46. sor:
:E: Egyik sem
:E: Egyik sem
 
 
# Egy kerékpáros 20m sugarú körpályán 10 m/s állandó nagyságú sebességgel halad. A függőlegeshez képest mekkora szöggel kell dőlnie?
;2. Egy kerékpáros 20m sugarú körpályán 10 m/s állandó nagyságú sebességgel halad. A függőlegeshez képest mekkora szöggel kell dőlnie?
<pre>  a) tg fi =0,1 b) tg fi =0,2 c) tg fi =0,5 d) tg fi =0,8 e) Egyik sem </pre>
:A: tg fi =0,1
A körmozgás dinamikai feltétele szerint a normális irányú gyorsulás a kerületi sebesség négyzete osztva a körpálya sugarával: <math> a_n=\frac{v^2}{r} </math>, valamint ha a sebesség állandó, akkor a tangenciális irányú gyorsulás nulla. Ez alapján a kerékpárosra ható eredő erő <math> F=m\frac{v^2}{r} </math>, és a kör közepe felé mutat. Ha feltételezzük, hogy nem a súrlódás tartja a pályáján, akkor az úttestnek lejtenie kell a kör közepe felé. Ha felveszünk egy, a pályára merőleges síkot, és berajzoljuk a kerékpárosra ható erőket, akkor lesz a felületnek egy K nyomóereje (merőleges a felületre) és egy mg gravitációs erő; ezek eredője F kell legyen.
:B: tg fi =0,2
Ha az úttest <math> \varphi </math> szöggel tér el a vízszintestől (a kerékpáros pedig ugyanennyivel a függőlegestől), akkor az erők függőleges irányú komponensei: <math> K\cos\varphi - mg = 0 </math> (ugyanis függőleges irányban 0 az eredő erő), a vízszintes irányúak pedig: <math> K\sin\varphi = F = m\frac{v^2}{r} </math>, mert F az eredő erő. Ezekből kifejezve <math> \tan\varphi </math>-t: <math> \tan\varphi = \frac{v^2}{rg}\approx 0.5 </math>
:C: tg fi =0,5
:D: tg fi =0,8
:E: Egyik sem
 
# Egy omega =11 *k* 1/sec szögsebességgel forgó korongon 0,2 kg tömegű test halad *v* =3 *i* +5 *j* m/s sebességgel. A ráható Coriolis-erő
# Egy omega =11 *k* 1/sec szögsebességgel forgó korongon 0,2 kg tömegű test halad *v* =3 *i* +5 *j* m/s sebességgel. A ráható Coriolis-erő
<pre>  a) 12 *k*  b) 40 *i* - 24 *j* c) 22 *i* - 13,2 *j*  d) Egyik sem  (//Mind (N))</pre>
<pre>  a) 12 *k*  b) 40 *i* - 24 *j* c) 22 *i* - 13,2 *j*  d) Egyik sem  (//Mind (N))</pre>
87. sor: 90. sor:
====1.====
====1.====
A megtett út a sebesség nagyságának (a sebességvektor abszolút értékének) az integrálja (a sebességvektor integrálja lenne a helyvektor megváltozása). A sebességvektor a helyvektor deriváltja: <math> v=\frac{\partial r}{\partial t}=6t{\bf i} + 8t{\bf j } </math>, ennek abszolútértéke: <math> |v|=\sqrt{(6t)^2+(8t)^2}=|10t| </math>, ennek integrálja <math> \int_0^{11} |10t| dt=605 </math>
A megtett út a sebesség nagyságának (a sebességvektor abszolút értékének) az integrálja (a sebességvektor integrálja lenne a helyvektor megváltozása). A sebességvektor a helyvektor deriváltja: <math> v=\frac{\partial r}{\partial t}=6t{\bf i} + 8t{\bf j } </math>, ennek abszolútértéke: <math> |v|=\sqrt{(6t)^2+(8t)^2}=|10t| </math>, ennek integrálja <math> \int_0^{11} |10t| dt=605 </math>
====2.====
A körmozgás dinamikai feltétele szerint a normális irányú gyorsulás a kerületi sebesség négyzete osztva a körpálya sugarával: <math> a_n=\frac{v^2}{r} </math>, valamint ha a sebesség állandó, akkor a tangenciális irányú gyorsulás nulla. Ez alapján a kerékpárosra ható eredő erő <math> F=m\frac{v^2}{r} </math>, és a kör közepe felé mutat. Ha feltételezzük, hogy nem a súrlódás tartja a pályáján, akkor az úttestnek lejtenie kell a kör közepe felé. Ha felveszünk egy, a pályára merőleges síkot, és berajzoljuk a kerékpárosra ható erőket, akkor lesz a felületnek egy K nyomóereje (merőleges a felületre) és egy mg gravitációs erő; ezek eredője F kell legyen.
Ha az úttest <math> \varphi </math> szöggel tér el a vízszintestől (a kerékpáros pedig ugyanennyivel a függőlegestől), akkor az erők függőleges irányú komponensei: <math> K\cos\varphi - mg = 0 </math> (ugyanis függőleges irányban 0 az eredő erő), a vízszintes irányúak pedig: <math> K\sin\varphi = F = m\frac{v^2}{r} </math>, mert F az eredő erő. Ezekből kifejezve <math> \tan\varphi </math>-t: <math> \tan\varphi = \frac{v^2}{rg}\approx 0.5 </math>