„Fizika 2 - Vizsga, 2013.01.02.” változatai közötti eltérés

A VIK Wikiből
Mp9k1 (vitalap | szerkesztései)
Mp9k1 (vitalap | szerkesztései)
45. sor: 45. sor:
A teljes ''R'' ellenállás:
A teljes ''R'' ellenállás:


<math>R = \int \mathrm dR = \int_a^b \frac 1 \sigma \frac{\mathrm d r}{4 r^2 \pi} = \frac{1}{4 \sigma \pi} \int_a^b \frac{\mathrm d r}{r^2} = ...</math>
<math>R = \int \mathrm dR = \int_a^b \frac 1 \sigma \frac{\mathrm d r}{4 r^2 \pi} = \frac{1}{4 \sigma \pi} \int_a^b \frac{\mathrm d r}{r^2} = - \frac{1}{4 \pi \sigma b} + \frac{1}{4 \pi \sigma a} = \frac{b-a}{4 \pi \sigma a b}</math>


De ez felesleges, hiszen ismerjük a gömb térfogatának képletét: <math>V = \frac{4}{3}r^3 \pi</math>
Tehát c)
 
Ebből a gömbhéj térfogata: <math>V=\frac{4}{3}\pi (b^3 - a^3)</math>
 
A teljes ellenállás <math>R=\varrho V = \frac{V}{\sigma} = \frac{4 \pi}{\sigma} \frac{b^3-a^3}{3}</math>


===5. feladat (a feladatlapon 3. sorszámmal)===
===5. feladat (a feladatlapon 3. sorszámmal)===

A lap 2013. január 5., 19:07-kori változata


A vizsgafeladatok. (Katt ide!)

A másik csoportnak ugyanezek a feladatok voltak, a sorrend volt csak más.

Számítási feladatok

1. feladat (a feltöltött feladatlapon 4. sorszámmal)

Fluxus a kör felületén: (skalárszorzat miatt)

Indukált feszütség:

Ez akkor maximális ha , tehát

Tehát d)

2. feladat (a feladatlapon 9. sorszámmal)

A Gauss-törvényből következik, hogy az E tér csak a bezárt töltéstől függ. Mivel 1cm < 1.25cm < 1.5cm, külső henger töltése/tere lényegtelen. A térerősség sugárirányú a rendszer szimmetriája miatt, kifelé mutat mert pozitív töltés. A felhasznált Gauss-felület a hengerpalást, a záró lapok a végtelen hossz (a) miatt elhanyagolhatók.

A felületi töltéssűrűséggel és a palást területével kiszámítható a bezárt töltés, másrészt E az adott köríven konstans, merőleges dA-ra, ezért szorzat az integrál.

, ha

Tehát b)

4. feladat (a feladatlapon 2. sorszámmal)

A teljes ellenállás számítható integrálással:

A gömbhéj egy vastagságú gömbhéjának a ellenállása (a képletbe behelyettesítve):

A teljes R ellenállás:

Tehát c)

5. feladat (a feladatlapon 3. sorszámmal)

A Newton-i erő-ellenerő törvényre figyeljünk, a vezetők F erővel vonzzák egymást, az egyik F-fel vonzza a másikat, a másik szintén F-fel az egyiket. Előjelben térnek el, ha egy dimenzióban akarjuk vizsgálni. Tehát azt az erőt keressük, amit az egyik kifejt a másikra. Az Ampere-tövényt használjuk fel, miszerint:

Megjegyzés: itt nem vesszük figyelembe a deriváltat tartalmazó tagot a jobb oldalon, mert az áram, így az elektromos tér is állandó.

Egyenes vezető mágneses tere a sugártól függ, jobbkéz-szabály szerint forog körbe. Az áramsűrűség integrálja a felületre maga az átfolyó áramerősség.

A kifejtett erő levezethető a Lorentz-erő képletéből:

, mert

Mivel a mágneses tér az r sugarú körön érintő irányú, merőleges a vezetőre, tehát a vektorszorzat egyszerű szorzás:

, mindkét oldalt I-vel szorozva:

Tehát c) az előjel pedig azt jelzi, hogy mindkét irányba folyhat a 20-20 amper párhuzamosan.

Kiegészítős kérdések

4. homogén mágneses térben forgó töltés

Az eredeti megoldókulcsban az volt, hogy a pálya sugara nem változik, ezt többeknek elfogadták. Megtekintéskor azt sikerült megbeszélni az egyik előadóval, hogy a kétszeres térerősség miatt felére csökken a sugár, majd erről ő meggyőzte a másikat is ott előttünk (neveket inkább nem is írok).

Tudjuk, hogy körpályán a centripetális erő tartja, ami a részecskére ható erők összege. A részecskére csak a Lorentz erő hat. A gravitáció hatása elhanyagolhatóan kicsi.

Azért egyszerű szorzás, mert csak akkor marad a körpályán, hogyha v merőleges B-re. Innen az előadó érvelése (az, amivel én is meg akartam győzni őt), hogy a mágneses erőtér nem gyorsítja fel a részecskét, csak a sebesség iránya változik, ezért hiába kétszeres a B, a v nem fog megváltozni (a kinetikus energia sem). m, v, q tehát nem változhatnak, csak R változása kompenzálhatja B változását:

Esszékérdések

//TODO: ezt valaki nézze ki Hudson-Nelsonból