„Fizika 2 - Vizsga, 2013.01.02.” változatai közötti eltérés

A VIK Wikiből
Mp9k1 (vitalap | szerkesztései)
Mp9k1 (vitalap | szerkesztései)
2. sor: 2. sor:


===Számítási feladatok===
===Számítási feladatok===
====1.====
====1. feladat====
<math>0.5 m = 2 r \pi \Rightarrow r \approx 0.0796 m</math>
<math>0.5 m = 2 r \pi \Rightarrow r \approx 0.0796 m</math>


17. sor: 17. sor:
Tehát d)
Tehát d)


====2.====
====2. feladat====
A Gauss-törvényből következik, hogy az E tér csak a bezárt töltéstől függ. Mivel 1cm < 1.25cm < 1.5cm, külső henger töltése/tere lényegtelen. A térerősség sugárirányú a rendszer szimmetriája miatt, kifelé mutat mert pozitív töltés.
A Gauss-törvényből következik, hogy az E tér csak a bezárt töltéstől függ. Mivel 1cm < 1.25cm < 1.5cm, külső henger töltése/tere lényegtelen. A térerősség sugárirányú a rendszer szimmetriája miatt, kifelé mutat mert pozitív töltés.
A felhasznált Gauss-felület a hengerpalást, a záró lapok a végtelen hossz (a) miatt elhanyagolhatók.
A felhasznált Gauss-felület a hengerpalást, a záró lapok a végtelen hossz (a) miatt elhanyagolhatók.

A lap 2013. január 5., 15:56-kori változata

A másik csoportnak ugyanezek a feladatok voltak, a sorrend volt csak más.

Számítási feladatok

1. feladat

Fluxus a kör felületén: (skalárszorzat miatt)

Indukált feszütség:

Ez akkor maximális ha , tehát

Tehát d)

2. feladat

A Gauss-törvényből következik, hogy az E tér csak a bezárt töltéstől függ. Mivel 1cm < 1.25cm < 1.5cm, külső henger töltése/tere lényegtelen. A térerősség sugárirányú a rendszer szimmetriája miatt, kifelé mutat mert pozitív töltés. A felhasznált Gauss-felület a hengerpalást, a záró lapok a végtelen hossz (a) miatt elhanyagolhatók.

A felületi töltéssűrűséggel és a palást területével kiszámítható a bezárt töltés, másrészt E az adott köríven konstans, merőleges dA-ra, ezért szorzat az integrál.

, ha

Tehát b)

Esszé kérdések

//TODO: ezt valaki nézze ki Hudson-Nelsonból