„Digit1Beugró” változatai közötti eltérés
| 298. sor: | 298. sor: | ||
=5. Ellenőrző kérdések= | =5. Ellenőrző kérdések= | ||
;501 Mik jellemzik a TSH hálózatokat? | |||
: Egy automata teljesen specifikált (TSH), ha az összes következő állapota (Qt+1) és kimenete (Z) specifikált. | |||
;502 Mik jellemzik az NTSH hálózatokat? | |||
: Van az állapottáblában olyan kimenet vagy következő állapot, ami nem specifikált (tartalmaz don't care-t) | |||
;503 Milyen állapotminimalizálási módszereket ismer? | |||
: Partíciófinomítás, lépcsős-táblás módszer | |||
;504 Mi adja a partíciófinomítás első partícióját? | |||
: Megadott bemenetekre eltérő kimenetet adó esetek 1-1 külön csoportot alkotnak. | |||
;505 Mikor zárt egy particionálás? | |||
: Egy adott partíción belüli állapotokból, adott bemenetre azonos partícióba megyünk. | |||
;506 Írja fel az állapotekvivalencia rekurzív definícióját! | |||
: <math>q_i \equiv q_j</math>, ha bármely lehetséges bemenetre érvényes, hogy a kimenet azonos | |||
: <math>g(q_i,x_k) = g(q_i,x_k)</math> | |||
;507 Írja fel az állapotkompatibilitás rekurzív definicióját! | |||
: <math>q_i \sim q_j</math>, ha bármely érvényes bemenetre a specifikált helyeken, hogy <math>g(q_i,x_k) = g(q_i,x_k)</math> és <math>f(q_i,x_k) \sim f(q_i,x_k)</math> | |||
;508 Mi jellemzi a maximális ekvivalencia osztályozást? | |||
: Az egyes osztályok nem bővíthetőek új állapottal. Minden állapot benne van 1 osztályban, és ezek páronként ekvivalensek. | |||
;509 Mi jellemzi a maximális kompatibilitási osztályozást? | |||
: Nincs több olyan állapot, ami az osztály összes tagjával kompatibilis lenne. 1 osztály állapotai páronként kompatibilisek, és maximális nagyságúak. | |||
;510 Egy állapot hány helyen lehet a max. kompatibilitási osztályozásban? | |||
: Annyi helyen lehet, ahány olyan osztály van, melynek minden tagjával kompatibilis. Ez akár az összes kompatibilitási osztály is lehet. | |||
;511 Milyen hálózatokhoz javasoljuk a partíciófinomítást? | |||
: TSH | |||
;512 Milyen hálózatokhoz javasoljuk a lépcsős táblás módszert? | |||
: TSH, NTSH | |||
;513 Fogalmazza meg a szomszédos kódolás feltételét a "soronkövetkező állapotok" alapján! | |||
: Ha van olyan lehetséges bemenet (<math>x_k</math>), hogy a két állapot (<math>q_i, q_j</math>) soronkövetkező állapota azonos, akkor az ezek közti Hamming-távolság (<math>d_{min}</math>) legyen 1. | |||
: Legyen <math>d_{min} = 1</math>, ha <math>q_i,q_j</math>-re <math>f(q_i, x_k) = f(q_j, x_k)</math>. | |||
;514 Fogalmazza meg a szomszédos kódolás feltételét a "megelőző állapotok" alapján! | |||
: Ha <math>q_i,q_j</math> soronkövetkező állapota <math>q_m</math>-nek, akkor Hamming-távolságuk legyen 1. | |||
: Legyen <math>d_min = 1</math>, ha <math>q_i,q_j</math>-re <math>q_i=f(q_m, x_k)</math> és <math>q_j=f(q_m, x_l)</math>. | |||
;515 n biten M állapotnak hányféle "különböző költségű" állapotkódolása van? | |||
: <math>\frac{ (^{2^n} _M )M! }{2^n n!}</math> | |||
;516 Milyen átalakításokkal biztosan nem változik egy állapotkódolás költsége? | |||
: A kódbitek átnevezésével vagy invertálásával. | |||
;517 Mit jelent az, hogy "előírt kimenet alapján" kódolunk? | |||
: ?? | |||
;518 Miket nevezünk önfüggő szekunder változóknak? | |||
: ?? | |||
;519 Milyen triviális HT particiókat ismer? | |||
: Ha minden állapot 1 db osztályban van, és ha minden állapot külön-külön osztályban van. | |||
;520 Mi jellemzi a HT particionálás osztályait? | |||
: ?? | |||
;521 Mikor zárt egy HT particionálás? | |||
: Ha egy osztály minden átmenete azonos osztályba megy át. | |||
;522 Mikor alakul ki a hálózat párhuzamos dekompoziciója? | |||
: Két ortogonális HT partíció alapján kódolva, párhuzamos dekompozíció alakul ki. | |||
;523 Mikor alakul ki a hálózat soros dekompoziciója? | |||
: Egy HT partíció alapján kódolva soros dekompozíció alakul ki. | |||
;524 Mikor ortogonális két HT particionálás? | |||
: Amikor partíciók blokkjainak metszete maximum 1 állapotot tartalmaz és az összes állapot szerepel benne, vagyis ortogonálisak. | |||
;525 Milyen HT particiót talál "ciklikus" feladatokban? | |||
: Ortogonálist. | |||