„Laboratórium 2 - 8. Mérés ellenőrző kérdései” változatai közötti eltérés

A VIK Wikiből
 
(4 közbenső módosítás ugyanattól a felhasználótól nincs mutatva)
19. sor: 19. sor:


==3. Mit értünk állapot-visszacsatolás alatt? ==
==3. Mit értünk állapot-visszacsatolás alatt? ==
A szakasz egy belső állapotát/állapotait csatoljuk vissza (nem a kimenetét).
 
Azt, hogy u = -K*x , azaz a beavatkozó jel az állapotok lineáris kombinációjakért írható fel.


[[File:Szabtech állapot-visszacsatolás ábra.JPG|400px]]
[[File:Szabtech állapot-visszacsatolás ábra.JPG|400px]]
48. sor: 49. sor:
==10. Mi a kapcsolat a "terhelés" elnevezés és a zavaró jel között? ==
==10. Mi a kapcsolat a "terhelés" elnevezés és a zavaró jel között? ==


A zavarást a szakasz bemenetére redukáltnak képzeljük (“load change”, terhelésbecslés).
A konstans terhelés megfeleltethető a bemenetre redukált konstans zavarással.


==11. Hogyan küszöbölhető ki a terhelés hatása? ==
==11. Hogyan küszöbölhető ki a terhelés hatása? ==
56. sor: 57. sor:


Diszkrétidejű rendszereknél célszerű kihasználni, hogy a t = iT pillanatban már rendelkezésre áll y[i], ezért ha ezt a szabályozóban már figyelembe vesszük, akkor egy T ütemnyi holtidőt eliminálni tudunk a szabályozóban.
Diszkrétidejű rendszereknél célszerű kihasználni, hogy a t = iT pillanatban már rendelkezésre áll y[i], ezért ha ezt a szabályozóban már figyelembe vesszük, akkor egy T ütemnyi holtidőt eliminálni tudunk a szabályozóban.
Másik megfogalmazás:
Az aktuális állapotmegfigyelő egy diszkrét idejű időinvarináns lineáris dinamikus rendszer, amelynek kimenete az 𝑥̂<sub>i</sub> becsült állapot:
<math>x̂_{i} = Fx̂_{i-1} + Gy_{i} + Hu_{i-1} </math>
Előnyei:
* F, G és H megfelelő megválasztásával a becslési hiba 0-ra csökkenthető
* mivel a kimenet aktuális értékét használja, így kiküszöböl egy mintavételi időnyi holtidőt


==13. Miért érdemes integrátort tenni a szabályozási körbe? ==
==13. Miért érdemes integrátort tenni a szabályozási körbe? ==
61. sor: 71. sor:


==14. Hogyan képződik le egy folytonos idejű pólus a diszkrétidejű tartományba? ==
==14. Hogyan képződik le egy folytonos idejű pólus a diszkrétidejű tartományba? ==
<math>z = e^{sT} </math>
<math>z = e^{sT} </math> , ahol T a mintavételi periódusidő


==15. Mit okoznak a megfigyelő sajátértékei a zárt rendszer átviteli függvényében? ==
==15. Mit okoznak a megfigyelő sajátértékei a zárt rendszer átviteli függvényében? ==

A lap jelenlegi, 2023. március 30., 10:06-kori változata


Oktatói kérésre a válaszok kitörölve (túl nagy átfedést mutattak az oktatói segédlettel). Ha jól értelmeztem, saját szavakkal megfogalmazva beírhatjátok a válaszokat - Kozaróczy Zsolt (vita) 2015. március 24., 12:37 (UTC)


1. Milyen identifikációs rendszermodelleket ismer?

  • AR (autoregresszív)
  • MA (moving average - mozgóátlag)
  • X (exegenous signal - külső bemenőjelet tartalmazó)
  • OE (output error - kimenetre redukált additív zajt tartalmazó)
  • BJ (Box-Jenkins modell)
  • PEM (parameter estimation model - általános lineáris paraméterbecslési modell)

2. Miért van szükség identifikációra?

Identifikáció segítségével tudunk egy szakaszról modellt alkotni (meghatározni a sajátértékeit, pólusait, zérusait, időállandóit, stb.). Ehhez a modellhez tervezzük a szabályozót.

3. Mit értünk állapot-visszacsatolás alatt?

Azt, hogy u = -K*x , azaz a beavatkozó jel az állapotok lineáris kombinációjakért írható fel.

4. Mi lesz állapot-visszacsatolás esetén a zárt rendszer karakterisztikus egyenlete?

Értelmezés sikertelen (formai hiba): {\displaystyle det(A - BK - λI) = 0 }

5. Mik a fő problémák az egyszerű u=-Kx állapot-visszacsatolás esetén tipikus irányítási rendszerekben?

Az állapotok gyakran nem mérhetőek közvetlenül, ezért becsülni kell őket.

6. Mi a domináns póluspár?

A zárt szabályozási kör átviteli függvényének nullához legközelebbi pólusát vagy konjugált komplex póluspárját a zárt rendszer domináns póluspárjának nevezzük. Ökölszabályként elfogadható, hogy ha a többi pólus a domináns konjugált komplex póluspártól balra úgy helyezkedik el, hogy valós részének abszolút értéke legalább háromszor nagyobb a domináns póluspár valós részének abszolút értékénél, akkor a zárt rendszer átmeneti függvényének (ugrásválaszának) első maximuma helyén a többi pólus tranziense már lecseng, ezért a dinamikus minőségi jellemzőket a domináns póluspár határozza meg.

7. Mi a kapcsolat a kéttárolós lengő tag csillapítása és csillapítatlan sajátfrekvenciája valamint a hozzátartozó pólusok között?

8. Mi biztosítja a konstans alapjel követését állapot-visszacsatolt rendszerekben?

Az alapjelet az Nx és Nu segítségével vesszük figyelembe. Ezeket a végértékek alapján határozhatjuk meg. Pl. egységugrás alapjel esetén: r[∞]=1, e[∞]=0, y[∞]=1, valamint x[k+1]=x[k] felhasználásával. Beépítésük a szabályozóba az ábrán látható.

9. Miért szükséges állapotmegfigyelő alkalmazása?

Az állapot-visszacsatolásban szereplő x állapot általában nem mérhető (az érzékelő szervek csak az y kimenetet mérik), ezért helyettesíteni kell valamilyen x̂ becsléssel. Ha a jelek determinisztikusak, akkor az x̂ -ot meghatározó egységet állapotmegfigyelőnek nevezzük, mely a szakasz ismert u bemenete és mért y kimenete alapján számít becslést x -re.

10. Mi a kapcsolat a "terhelés" elnevezés és a zavaró jel között?

A konstans terhelés megfeleltethető a bemenetre redukált konstans zavarással.

11. Hogyan küszöbölhető ki a terhelés hatása?

Terhelésbecslő alkalmazásával. Ekkor a terhelést konstansnak feltételezzük, de értékét nem ismerjük előre, állapotváltozónak tekintjük, és úgy vesszük, hogy a szakasz elején adódik hozzá a beavatkozó jelhez (u).

12. Mit értünk diszkrétidejű aktuális megfigyelő alatt és mik az előnyei?

Diszkrétidejű rendszereknél célszerű kihasználni, hogy a t = iT pillanatban már rendelkezésre áll y[i], ezért ha ezt a szabályozóban már figyelembe vesszük, akkor egy T ütemnyi holtidőt eliminálni tudunk a szabályozóban.

Másik megfogalmazás: Az aktuális állapotmegfigyelő egy diszkrét idejű időinvarináns lineáris dinamikus rendszer, amelynek kimenete az 𝑥̂i becsült állapot:

Értelmezés sikertelen (formai hiba): {\displaystyle x̂_{i} = Fx̂_{i-1} + Gy_{i} + Hu_{i-1} }

Előnyei:

  • F, G és H megfelelő megválasztásával a becslési hiba 0-ra csökkenthető
  • mivel a kimenet aktuális értékét használja, így kiküszöböl egy mintavételi időnyi holtidőt

13. Miért érdemes integrátort tenni a szabályozási körbe?

A (konstans) zavaró hatás kiküszöbölhető vele.

14. Hogyan képződik le egy folytonos idejű pólus a diszkrétidejű tartományba?

, ahol T a mintavételi periódusidő

15. Mit okoznak a megfigyelő sajátértékei a zárt rendszer átviteli függvényében?