„KoopKerdesekZHOssz01” változatai közötti eltérés

a Néhány elgépelés javítása.
aNincs szerkesztési összefoglaló
 
(3 közbenső módosítás ugyanattól a felhasználótól nincs mutatva)
17. sor: 17. sor:
A konvergencia feltétele: <math> 0< {\mu}< \frac1{\lambda_{max}} </math>
A konvergencia feltétele: <math> 0< {\mu}< \frac1{\lambda_{max}} </math>


<math>{\mu} </math> bátorsági tényező, tanulási faktor
<math>{\mu} </math> bátorsági tényező, tanulási faktor, <math>{\lambda_{max}}</math> az autokorrelációs mátrix legnagyobb sajátértéke


'''Az Adaline optimális súlyvektorának meghatározására mind az analitikus összefüggés, mint az iteratív tanuló eljárás létezik. Adja meg a kétféle meghatározás összefüggését, és azokat, a feltételeket, amelyek fennállta esetén az iteratív megoldás az analitikus eredményéhez tart! Azt is adja meg, hogy milyen kritériumfüggvény alapján fogalmazzuk meg az optimumfeladatot!'''
'''Az Adaline optimális súlyvektorának meghatározására mind az analitikus összefüggés, mint az iteratív tanuló eljárás létezik. Adja meg a kétféle meghatározás összefüggését, és azokat, a feltételeket, amelyek fennállta esetén az iteratív megoldás az analitikus eredményéhez tart! Azt is adja meg, hogy milyen kritériumfüggvény alapján fogalmazzuk meg az optimumfeladatot!'''
23. sor: 23. sor:
Analitikus meghatározás:  
Analitikus meghatározás:  
Wiener-Hopf egyenlet
Wiener-Hopf egyenlet
<math> \underline{w}^{*}= \underline{\underline{R}}^{-1} \cdot \underline{P} </math>
<math> \underline{w}^{*}= \underline{\underline{R}}^{-1} \cdot \underline{p} </math>


<math> \underline{\underline{R}} </math> autokorrelációs mátrix
<math> \underline{\underline{R}} </math> autokorrelációs mátrix


<math> \\ \underline{P}</math> keresztkorrelációs vektor
<math> \\ \underline{p}</math> keresztkorrelációs vektor




50. sor: 50. sor:


A kritériumfüggvény: <math> C ( w ) = \frac{1}{P} \sum_{i = 1}^{P} \left( d_i - f(w,x_i) \right)^2 </math>
A kritériumfüggvény: <math> C ( w ) = \frac{1}{P} \sum_{i = 1}^{P} \left( d_i - f(w,x_i) \right)^2 </math>
A lineáris kapcsolat miatt az <math> f(w,x) = w^{T}x </math>. Vagyis az átlagos négyzetes hiba felírható a következő formában is:<math> C(w) = (d - X w)^{T} ( d - X w) {}</math>. Ahol d a tanítópontokbeli kívánt válaszokból épített p elemű oszlopvektor, X a bemeneti vektorokból képzett mátrix, w pedig a keresett paramétervektor. A megoldás itt aztán a <math> d = X w {}</math>, máshogyan <math> w = X^{-1} d {}</math>, valamint pszeudoinverz alkalmazásával <math> w^{*} = X^{\dagger} d = ( X^TX)^{-1} X^T d </math>. Az összefüggés legfontosabb része, hogy ugyaerre a megoldásra jutunk, hogyha kritériumfüggvény (amit az iteratív eljáráshoz alkalmazott kritériumfüggvény átalakítottja, vagyis nem a szummás, hanem amelyik függvény utána van) gradiens nulla értéket biztosító paraméterét határozzuk meg:
A lineáris kapcsolat miatt az <math> f(w,x) = w^{T}x </math>. Vagyis az átlagos négyzetes hiba felírható a következő formában is:<math> C(w) = (d - X w)^{T} ( d - X w) {}</math>. Ahol d a tanítópontokbeli kívánt válaszokból épített p elemű oszlopvektor, X a bemeneti vektorokból képzett mátrix, w pedig a keresett paramétervektor. A megoldás itt aztán a <math> d = X w {}</math>, máshogyan <math> w = X^{-1} d {}</math>, valamint pszeudoinverz alkalmazásával <math> w^{*} = X^{\dagger} d = ( X^TX)^{-1} X^T d </math>. Az összefüggés legfontosabb része, hogy ugyanerre a megoldásra jutunk, hogyha kritériumfüggvény (amit az iteratív eljáráshoz alkalmazott kritériumfüggvény átalakítottja, vagyis nem a szummás, hanem amelyik függvény utána van) gradiens nulla értéket biztosító paraméterét határozzuk meg:
<math> \frac{\partial  C ( w ) }{ \partial w } = -2 X^Td + 2 X^TXw = 0 </math>
<math> \frac{\partial  C ( w ) }{ \partial w } = -2 X^Td + 2 X^TXw = 0 </math>
Ekkor ezt kapjuk:
Ekkor ezt kapjuk:
A lap eredeti címe: „https://vik.wiki/KoopKerdesekZHOssz01