„KoopKerdesekZHOssz03” változatai közötti eltérés

aNincs szerkesztési összefoglaló
aNincs szerkesztési összefoglaló
 
(Egy közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
8. sor: 8. sor:
* R heurisztikus szórás választás: általában elég tág határok közt változtatható a tanulási képesség rontása nélkül.. Jól használható az adott középpontú bázisfüggvény szórásának, ha vesszük a középponthoz legközelebbi R (R=2-3) másik középpontot, és ezek távolságainak átlagát számoljuk. Ha mindegyik függvényhez azonos szórást akarunk használni, erre is használható a fenti kifejezés (véletlenszerűen kijelölve egy középpontot).  
* R heurisztikus szórás választás: általában elég tág határok közt változtatható a tanulási képesség rontása nélkül.. Jól használható az adott középpontú bázisfüggvény szórásának, ha vesszük a középponthoz legközelebbi R (R=2-3) másik középpontot, és ezek távolságainak átlagát számoljuk. Ha mindegyik függvényhez azonos szórást akarunk használni, erre is használható a fenti kifejezés (véletlenszerűen kijelölve egy középpontot).  
* Végül mind a középpontok, mind a szórások meghatározására alkalmazhatóak az ellenőrzött tanítási módszerek, pl. gradiens alapú keresés, viszont fontos megjegyezni, hogy például a szórás hibafelülete nem kvadratikus, így érvényes minden rá, ami az MLP nem kvadratikus hibafelületére.
* Végül mind a középpontok, mind a szórások meghatározására alkalmazhatóak az ellenőrzött tanítási módszerek, pl. gradiens alapú keresés, viszont fontos megjegyezni, hogy például a szórás hibafelülete nem kvadratikus, így érvényes minden rá, ami az MLP nem kvadratikus hibafelületére.
Annyit tennék még itt hozzá, hogy az OLS azon kívül, hogy iteratívan választ újabb középpontokat, közbeiktat egy ortogonalizáló lépést is. Ez ahhoz kell, hogy a kiválasztott középpontok minél inkább korrelálatlanok legyenek, vagyis minél inkább függetlenül szóljanak bele egymástól a kimenetbe (ugye az ortogonalitás annyit tesz, hogy a skaláris szorzatuk 0, vagyis korrelálatlanok).


'''Mit nevezünk túltanulásnak, milyen következménye van, és hogyan lehet védekezni ellene? (minden ismert ellenszert mutasson be)'''
'''Mit nevezünk túltanulásnak, milyen következménye van, és hogyan lehet védekezni ellene? (minden ismert ellenszert mutasson be)'''
36. sor: 38. sor:
'''Mit nevezünk lokális és mit globális tanulásnak? Van-e előnye egyiknek a másikkal szemben? Az ismert hálók közül melyek a globális és melyek a lokális tanulási hálók és miért?'''
'''Mit nevezünk lokális és mit globális tanulásnak? Van-e előnye egyiknek a másikkal szemben? Az ismert hálók közül melyek a globális és melyek a lokális tanulási hálók és miért?'''
* Globális tanulás: Minden tanítóponton a tanulás kihat a teljes tartományra, vagyis ha tanítunk egy pontot egy MLP-nek, akkor az megfogja változtatni az értékét egy nagyon távoli bemenetnek is a kimenetét. Ilyenek az MLP, és az RBF, de csak olyan függvény esetén melynek a kimenete a teljes bemeneten érvényes, vagyis egy közepes szórású Gauss függvény már nem fejti ki mindenhol a hatását.
* Globális tanulás: Minden tanítóponton a tanulás kihat a teljes tartományra, vagyis ha tanítunk egy pontot egy MLP-nek, akkor az megfogja változtatni az értékét egy nagyon távoli bemenetnek is a kimenetét. Ilyenek az MLP, és az RBF, de csak olyan függvény esetén melynek a kimenete a teljes bemeneten érvényes, vagyis egy közepes szórású Gauss függvény már nem fejti ki mindenhol a hatását.
* Lokális tanulás: Leginkább a globális tanulás ellentettje, vagyis egy tanítópont csak véges területen fejti ki a hatását, így képesek vagyunk lokális tanulásra. Jó példa erre a XOR RBF-el való tanítása. Ilyenek a CMAC, az SVM, és az RBF is bizonyos paraméterek mellet.
* Lokális tanulás: Leginkább a globális tanulás ellentettje, vagyis egy tanítópont csak véges területen fejti ki a hatását, így képesek vagyunk lokális tanulásra. Jó példa erre a XOR RBF-el való tanítása. Ilyenek a CMAC, az SVM, és az RBF is bizonyos paraméterek mellett.


Itt megjegyeznék, hogy Horváth Gábor meglepetten mondta, hogy sokan írták azt, ami a docx-ben van, és az teljesen hülyeség, amit fentebb leírtam az 6/6 pontot ért.
Itt megjegyeznék, hogy Horváth Gábor meglepetten mondta, hogy sokan írták azt, ami a docx-ben van, és az teljesen hülyeség, amit fentebb leírtam az 6/6 pontot ért.
A lap eredeti címe: „https://vik.wiki/KoopKerdesekZHOssz03