„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

A VIK Wikiből
Kelmati (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
Nincs szerkesztési összefoglaló
 
(112 közbenső módosítás, amit 35 másik szerkesztő végzett, nincs mutatva)
10. sor: 10. sor:


Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a [[Segítség:Latex]] és a [[Segítség:LaTeX példák]] oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az [http://www.codecogs.com/latex/eqneditor.php Online LATEX editor] is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket.
Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a [[Segítség:Latex]] és a [[Segítség:LaTeX példák]] oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az [http://www.codecogs.com/latex/eqneditor.php Online LATEX editor] is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket.
De ha még ez se megy, akkor egyszerűen nézzél meg egy már fent lévő feladatot, hogy ott hogy vannak megoldva a speciális karakterek.


{{noautonum}}
{{noautonum}}
19. sor: 20. sor:
=== 1. Feladat: Két töltött fémgömb között az elektromos térerősség ===
=== 1. Feladat: Két töltött fémgömb között az elektromos térerősség ===


Két azonos <math>r_0=3 cm</math> sugarú fémgömb középpontjának távolsága <math>d=1.8m</math>. A gömbök közé <math>U_0=5kV</math> fezsültséget kapcsolunk.
Két azonos <math>r_0=3 cm</math> sugarú fémgömb középpontjának távolsága <math>d=1.8m</math>. A gömbök közé <math>U_0=5kV</math> feszültséget kapcsolunk.


Határozza meg a középpontokat összekötő egyenes szakasz felezőpontjában az elektromos térerősséget.
Határozza meg a középpontokat összekötő egyenes szakasz felezőpontjában az elektromos térerősséget.
72. sor: 73. sor:


}}
}}


=== 3. Feladat: Elektromos térerősség egyenletesen töltött henger belsejében ===
=== 3. Feladat: Elektromos térerősség egyenletesen töltött henger belsejében ===
160. sor: 160. sor:
=== 19. Feladat: Gömbkondenzátor elektródáira kapcsolható maximális feszültség ===
=== 19. Feladat: Gömbkondenzátor elektródáira kapcsolható maximális feszültség ===


Egy gömbkondenzátor belső elektródájának sugara <math>r_1=4mm</math> ,külső elektródájának sugara <math>r_2=6mm</math>, a dielektrikum relatív dielektromos állandója <math>\varepsilon_r = 4.5</math>. Legfeljebb mekkora feszültséget kapcsolhatunk a kondenzátorra,ha a térerősség a dielektrikumban nem haladhatja meg az <math>E=500\; {kV \over m}</math> értéket.
Egy gömbkondenzátor belső elektródájának sugara <math>R_\mathrm{1}=4 \; mm</math>, külső elektródájának sugara <math>R_\mathrm{2}=6 \; mm</math>, a dielektrikum relatív dielektromos állandója <math>\varepsilon_r = 4.5</math>.
 
Legfeljebb mekkora feszültséget kapcsolhatunk a kondenzátorra, ha a térerősség a dielektrikumban nem haladhatja meg az <math>E_{max}=500\; {kV \over m}</math> értéket.
 
{{Rejtett
{{Rejtett
|mutatott='''Még nincs megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
Legyen a belső, <math>R_\mathrm{1}</math> sugarú gömb töltése <math>Q</math>.
A Gauss törvény alkalmazásával könnyen meghatározhatjuk a gömbkondenzátor két elektródája közötti elektromos tér nagyságát, a középponttól mért <math>r</math> távolság függvényében:
<math>
  E(r) ={Q \over 4 \pi \varepsilon_0 \varepsilon_r} \cdot {1 \over r^2}
</math>
A fenti összefüggésből is látszik, hogy a dielektrikumban a legnagyobb térerősség a belső gömb felületén lesz, így ebből kifejezhető a <math>Q</math> töltés nagysága:
<math>
  E_{max} ={Q \over 4 \pi \varepsilon_0 \varepsilon_r} \cdot {1 \over {R_1}^2} \longrightarrow Q =
  E_{max} \cdot 4 \pi \varepsilon_0 \varepsilon_r \cdot {R_1}^2
</math>
A két elektróda közötti potenciálkülönbség:
<math>
  U_\mathrm{1,2}= -\int_{R_\mathrm{1}}^\mathrm{R_\mathrm{2}} \mathrm{E(r)} \; \mathrm{dr} 
  = - {Q \over 4 \pi \varepsilon_0 \varepsilon_r} \int_{R_\mathrm{1}}^\mathrm{R_\mathrm{2}} \mathrm{1 \over r^2} \; \mathrm{dr}
  = {Q \over 4 \pi \varepsilon_0 \varepsilon_r} \left( {1 \over R_\mathrm{1}} - {1 \over R_\mathrm{2}} \right)
</math>
A fenti összefüggéseket felhasználva meghatározható a két elektródára kapcsolható maximális feszültség:
<math>
  U_{max} = {E_{max} \cdot 4 \pi \varepsilon_0 \varepsilon_r \cdot {R_1}^2 \over 4 \pi \varepsilon_0 \varepsilon_r} \left( {1 \over R_\mathrm{1}} - {1 \over R_\mathrm{2}} \right) =
  E_{max} \left( R_1 - {(R_1)^2 \over R_2} \right)  =
  500 \cdot 10^3 \left( 4 \cdot 10^{-3} -  {(4 \cdot 10^{-3})^2 \over 6 \cdot 10^{-3}}\right)  = 666 \; V
</math>


}}
}}


=== 22. Feladat: Elektródarendszer energiaváltozása széthúzás hatására ===
=== 22. Feladat: Elektródarendszer energiaváltozása széthúzás hatására ===
237. sor: 275. sor:
}}
}}


=== 24. Feladat: Elektródarendszer energiája ===
Két elektródából és földből álló elektródarendszer föld- és főkapacitásai: <math>C_{10}, C_{20}, C_{12}</math>. Az elektródák potenciálja <math>\varphi_{1}, \varphi_{2}</math> a föld potenciálját válasszuk nullának: <math>\varphi_{0}=0</math>.
Mekkora az elektródarendszerben tárolt elektrosztatikus energia?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
[[File:Terek_24_Feladat.PNG | 500px]]
Az elektródarendszerben tárolt teljes elektrosztatikus energia a föld- és főkapacitásokban tárolt összenergiával egyezik meg. Egy kondenzátor elektrosztatikus energiája:
<math>
w_e = { 1 \over 2 } \sum_k { \Phi_k Q_k} =
{ 1 \over 2 } \left( \Phi^+ Q + \Phi^- (-Q) \right) =
{ 1 \over 2 } Q \left( \Phi^+ - \Phi^- \right) =
{ 1 \over 2 } Q U =
{ 1 \over 2 } (CU) U =
{ 1 \over 2 } C U^2
</math>
Ezt felhasználva a három kapacitásban tárolt összenergia:
<math>
W_e =  \frac{1}{2}C_{12}(\varphi _{1}-\varphi _{2})^{2}+\frac{1}{2}C_{10}(\varphi _{1})^{2}+\frac{1}{2}C_{20}(\varphi _{2})^{2}
</math>
}}


===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===
===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===
248. sor: 317. sor:
|szöveg=
|szöveg=


[[File:Terek_szóbeli_feladatok_gömbhlj_erővonalkép.JPG|400px]]
[[File:Terek_szóbeli_feladatok_gömbhlj_erővonalkép.JPG|300px]]




265. sor: 334. sor:
}}
}}


=== 27. Feladat: R sugarú egyenletesen töltött gömb D tere ===


== Stacionárius áramlási tér ==
Egy R sugarú gömb egyenletes <math>\rho</math> térfogati töltéssűrűséggel töltött.


 
Adja meg az elektromos eltolás nagyságát a középpontól 2R távolságban.
=== 36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása ===
 
Adott egy pontszerű <math>I=10A</math> áramerősségű pontszerű áramforrás egy <math>\sigma =200 {S \over m}</math> fajlagos vezetőképességű közegben.<br/>Határozza meg a teljesítménysűrűséget a forrástól <math>R=3m</math> távolságban.


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.


Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.<br/>Felírva a Gauss-törvényt egy <math>V</math> térfogatú <math>A</math> felületű gömbre, melynek középpontja a ponttöltés:
Írjuk fel a Gauss-törvényt egy zárt, <math>r > R</math> sugarú, <math>A</math> felületű gömbre, melynek középpontja egybeesik a töltött gömb középpontjával:


<math>\oint_A \vec{D} \; \mathrm{d} \vec{s}=\int_V \rho \; \mathrm{d} V</math>
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \int_{V} \rho \; \mathrm{d}v</math>


Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \rho \cdot {4 R^3 \pi \over 3}</math>


<math>D(r)4r^2\pi = Q \longrightarrow \vec{D}(r)={Q \over 4 \pi} {1 \over r^2} \cdot \vec{e}_r</math>
Szimmetria okokból az elektromos eltolásvektorok a gömb felületének minden pontjában sugárirányúak, azaz párhuzamosak a felület normálisával, tehát a felületintegrál szorzássá egyszerűsödik.
 
<math>\vec{D}(r) \cdot 4 r^2 \pi = \rho \cdot {4 R^3 \pi \over 3}</math>
 
<math>\vec{D}(r) = { \rho R^3 \over 3} \cdot {1 \over r^2} \cdot \vec{e}_r</math>
 
<math>\vec{D}(2R) = { \rho R \over 12} \cdot \vec{e}_r</math>
 
}}
 
=== 28. Feladat: Gömb kapacitása a végtelenhez képest ===
 
Levegőben áll egy <math>20cm</math> sugarú fémgömb, amelyet egyenletes <math>3cm</math> vastagságú <math>4.5</math> relatív dielektromos állandójú szigetelő réteg borít.
 
Adja meg a gömb kapacitását a végtelen távoli térre vonatkoztatva!


Most felhasználva a betűcserés analógiát, megkapható a pontszerű áramforrás áramsűrűségvektora:
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math>\vec{J} \longleftrightarrow \vec{D}</math>
Legyen <math>r_1</math> csak a fémgömb és <math>r_2</math> a teljes golyó sugara, valamint <math>r_0=\infty</math>.


<math>I \longleftrightarrow Q</math>


<math>\vec{J}(r)={I \over 4 \pi} {1 \over r^2} \cdot \vec{e}_r</math>


Az áramsűrűség segítségével pedig pedig felírható a teljesítménysűrűség a távolság függvényében:
Ekkor az elektromos térerősség:


<math>
<math>
p(r)={\left( J(r) \right) ^2 \over \sigma} =\left( {I \over 4 \pi} {1 \over r^2} \right) ^2 \cdot {1 \over \sigma} =
E(r) =
{I^2 \over 16 \pi^2 \sigma} {1 \over r^4}
\begin{cases}
{\frac Q {4\pi\varepsilon_0} \cdot \frac 1 {r^2} }, & \text{ha }r>r_2 \\
{\frac Q {4\pi\varepsilon} \cdot \frac 1 {r^2} }, & \text{ha }r_1<r<r_2
\end{cases}
</math>
</math>


Innét pedig a teljesítménysűrűség a pontforrástól R távolságra:


<math>
p(R)={10^2 \over 16 \pi^2 200} {1 \over 3^4} \approx 39.09 \; {\mu W \over m^3}
</math>


}}
Az elektromos potenciál:


<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>


=== 38. Feladat: Koaxiális kábel szivárgási ellenállásából fajlagos vezetőképesség számítása ===
/*Szerintem rosszak az integrálási határok, fel vannak cserélve és így negatív eredményt kapunk.*/
Egy koaxiális kábel erének a sugara <math>{r_1} = 2mm</math>, köpenyének belső sugara <math>{r_2} = 6mm</math>.


Mekkora a szigetelőanyag <math>\sigma</math> fajlagos vezetőképessége, ha a kábel <math>l = 200m</math> hosszú szakaszának szivárgási ellenállása  <math>R = 4M\Omega</math>?
Felhasználva a <math>C=\frac Q U</math> formulát:
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Először is vegyük fel a koaxiális kábel elektrosztatikai modelljét (hengerkondenzátor) és számoljuk ki a hosszegységre eső kapacitását. Ezt úgy tehetjük meg, hogy előbb kiszámoljuk a potenciálkülönséget az ér és a köpeny között, majd kifejezzük a kapacitást:


<math>
<math>
U =- \int_{r_2}^{r_1} \vec{E}(r) d \vec{r} = - \int_{r_2}^{r_1} {q \over 2 \pi \varepsilon } \cdot {1 \over r} dr = -{q \over 2 \pi \varepsilon } \cdot \left[ ln(r) \right]_{r_2}^{r_1} = {q \over {2\pi \varepsilon }}\ln {{{r_2}} \over {{r_1}}}
C=4\pi{\varepsilon_0} \cdot \left(\frac 1 {\frac 1 {r_2} + \frac 1 {\varepsilon_{_{_r}}}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)}\right) = 24.78pF
</math>
</math>


<math>
q = U{{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}}
</math>


Ebből a hosszegységre eső kapacitás:
/*<math>\varepsilon_r</math> Nem viselkedik valami jól az utolsó képletben.*/
/*Kókányoltam rajta egy kicsit, de még mindig rossz*/


<math>
C = C'l
</math>


<math>
C \buildrel \Delta \over = {Q \over U} = {{ql} \over U} \to C' = {C \over l} = {{{{ql} \over U}} \over l} = {q \over U} = { U {2 \pi \varepsilon \over ln{r_2 \over r_1}}} \cdot {1 \over U } = {{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}}
</math>


(Persze aki tudja fejből a koaxiális kábel hosszegységre eső kapacitását, az kezdheti kapásból innét is a feladatot)
}}


Majd használjuk az elektrosztatika illetve az áramlási tér közötti betűcserés analógiákat:
== Stacionárius áramlási tér ==


<math>
=== 34. Feladat: Áramsűrűség meghatározása egy felület másik oldalán ===
C' \leftrightarrow G'
</math>


<math>
Adott <math>Z=0</math> sík. A <math>\sigma</math> vezetőképesség: <math>Z>0</math> esetén <math>\sigma = \sigma^+</math> és <math>Z<0</math> esetén <math>\sigma = \sigma^-</math>. Adott <math>J_1 = J_1(x) \cdot e_x + J_1(z) \cdot e_z</math> áramsűrűség a sík egyik oldalán.
\varepsilon  \leftrightarrow \sigma
</math>


Amit áthelyettesítve megkapjuk a hosszegységre eső konduktanciát:
Határozza meg az áramsűrűség függvényt a felület másik oldalán!


<math>
{{Rejtett
G' = {{2\pi \sigma } \over {\ln {{{r_2}} \over {{r_1}}}}}
|mutatott='''Megoldás'''
</math>
|szöveg=
<!-- Szerintetek ez jó? Mivel stacionárius áramlási tér van, ezért a a felületen töltés nem halmozódhat fel. Így a J normálisoknak meg kellene egyeznie! Nem? 2019.01.10 -->
Tudjuk, hogy <math >E = { J \over \sigma } </math>
 
Továbbá <math>E_{t1} = E_{t2}</math> és <math>D_{n2} = D_{n1} + \sigma </math> (!!! ez itt felületi töltéssűrűség, ami a példában 0), tehát <math>D_{n2} = D_{n1}</math>


Most kifejezzük a hosszegységre eső konduktanciát a szivárgási ellenállásból és a vezeték hosszából. Ha ez megvan akkor csak át kell rendezni a fajlagos vezetőképességre az egyenletet:
Ezekből következik, hogy: <math>E_1 = E_2</math>


<math>
Azaz: <math>{J_1 \over \sigma^-} = {J_2 \over \sigma^+}</math>
G = G'l = {1 \over R} \to G' = {1 \over R}{1 \over l}
</math>


<math>
<math>J_2 = J_1(x) \cdot e_x\cdot {\sigma^+ \over \sigma^-} + J_1(z) \cdot e_z \cdot {\sigma^+ \over \sigma^-}</math>
G' = {{2\pi \sigma } \over {\ln {{{r_2}} \over {{r_1}}}}} = {1 \over R}{1 \over l} \to \sigma = {{\ln {{{r_2}} \over {{r_1}}}} \over {2\pi }}{1 \over R}{1 \over l} = {ln {6 \over 2} \over 2 \pi} \cdot {1 \over 4 \cdot 10^6} \cdot {1 \over 200} \approx 218.6 \; {pS \over m}
</math>
}}
}}


=== 36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása ===
Adott egy pontszerű <math>I=10A</math> áramerősségű pontszerű áramforrás egy <math>\sigma =200 {S \over m}</math> fajlagos vezetőképességű közegben.<br/>Határozza meg a teljesítménysűrűséget a forrástól <math>R=3m</math> távolságban.


=== 42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása ===
Stacionárius áramlási térben az áramsűrűség <math> \vec{J} = 5 \vec{e}_z \;{kA \over m^2} </math>. Mekkora a z-tengellyel 60°-os szöget bezáró <math> A=80 cm^2</math> felületen átfolyó áram?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát:
A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.


<math>I = \int_A \vec{J} d \vec{s}</math>
Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.<br/>Felírva a Gauss-törvényt egy <math>V</math> térfogatú <math>A</math> felületű gömbre, melynek középpontja a ponttöltés:


Esetünkben a J áramsűrűség-vektor z irányú, így nekünk a felületre normális komponensével kell számolnunk:
<math>\oint_A \vec{D} \; \mathrm{d} \vec{s}=\int_V \rho \; \mathrm{d} V</math>


<math> I = J  A  \sin60^\circ=5000 \cdot 80 \cdot 10^{-4} \cdot \sin60^\circ= 34.64 \; A</math>
Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:


}}
<math>D(r)4r^2\pi = Q \longrightarrow \vec{D}(r)={Q \over 4 \pi} {1 \over r^2} \cdot \vec{e}_r</math>


Most felhasználva a betűcserés analógiát, megkapható a pontszerű áramforrás áramsűrűségvektora:


== Stacionárius mágneses tér ==
<math>\vec{J} \longleftrightarrow \vec{D}</math>


<math>I \longleftrightarrow Q</math>


=== 50. Feladat: Két áramjárta vezető közötti erőhatás ===
<math>\vec{J}(r)={I \over 4 \pi} {1 \over r^2} \cdot \vec{e}_r</math>


Két egymással párhuzamos végtelen hosszú vezető egymástól <math>d=4m</math> távolságban helyezkedik el. Az egyiken <math>I_1=2A</math>, a másikon <math>I_2=3A</math> folyik.
Az áramsűrűség segítségével pedig pedig felírható a teljesítménysűrűség a távolság függvényében:


Mekkora erő hat az egyik vezeték <math>l=1 m</math>-es szakaszára?
<math>
{{Rejtett
p(r)={\left( J(r) \right) ^2 \over \sigma} =\left( {I \over 4 \pi} {1 \over r^2} \right) ^2 \cdot {1 \over \sigma} =
|mutatott='''Megoldás'''
{I^2 \over 16 \pi^2 \sigma} {1 \over r^4}
|szöveg=
</math>
Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.


A mágneses térerősséget egy olyan L körvonalon integráljuk, ami által kifeszített A felület középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.
Innét pedig a teljesítménysűrűség a pontforrástól R távolságra:


<math>\oint_L \vec{H} \; d \vec{l} = \int_A \vec{J}  \; d \vec{s} = I</math>
<math>
p(R)={10^2 \over 16 \pi^2 200} {1 \over 3^4} \approx 39.09 \; {\mu W \over m^3}
</math>


<math>H_1 2 d \pi = I_1 \longrightarrow H_1 = \frac{I_1}{2 d \pi}</math>
}}




Tudjuk még, hogy <math>B = \mu_0 H</math> vákuumban.
=== 38. Feladat: Koaxiális kábel szivárgási ellenállásából fajlagos vezetőképesség számítása ===
Egy koaxiális kábel erének a sugara <math>{r_1} = 2mm</math>, köpenyének belső sugara <math>{r_2} = 6mm</math>.


Mekkora a szigetelőanyag <math>\sigma</math> fajlagos vezetőképessége, ha a kábel <math>l = 200m</math> hosszú szakaszának szivárgási ellenállása  <math>R = 4M\Omega</math>?


A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Először is vegyük fel a koaxiális kábel elektrosztatikai modelljét (hengerkondenzátor) és számoljuk ki a hosszegységre eső kapacitását. Ezt úgy tehetjük meg, hogy előbb kiszámoljuk a potenciálkülönséget az ér és a köpeny között, majd kifejezzük a kapacitást:


<math>\vec{F} = q \cdot (\vec{v} \times \vec{B} ) = I \cdot (\vec{l} \times \vec{B})</math>, ahol <math>I</math> a konstans áramerősség, <math>\vec{l}</math> pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.
<math>
U =- \int_{r_2}^{r_1} \vec{E}(r) d \vec{r} = - \int_{r_2}^{r_1} {q \over 2 \pi \varepsilon } \cdot {1 \over r} dr = -{q \over 2 \pi \varepsilon } \cdot \left[ ln(r) \right]_{r_2}^{r_1} = {q \over {2\pi \varepsilon }}\ln {{{r_2}} \over {{r_1}}}
</math>


<math>
q = U{{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}}
</math>


Innen a megoldás:
Ebből a hosszegységre eső kapacitás:


<math>F_{12} = I_2 l B_1 = I_2 l \mu_0 H_1 = \frac{\mu_0 l I_1 I_2}{2 d \pi} = \frac{4 \pi 10^{-7} \cdot 1 \cdot 2 \cdot 3}{2 \cdot 4 \cdot \pi} = 3 \cdot 10^{-7} N</math>
<math>
C = C'l
</math>


Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, akkor taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:
<math>
C \buildrel \Delta \over = {Q \over U} = {{ql} \over U} \to C' = {C \over l} = {{{{ql} \over U}} \over l} = {q \over U} = { U {2 \pi \varepsilon \over ln{r_2 \over r_1}}} \cdot {1 \over U } = {{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}}
</math>


<math>F = 2 \cdot 10^{-7} N</math>
(Persze aki tudja fejből a koaxiális kábel hosszegységre eső kapacitását, az kezdheti kapásból innét is a feladatot)
}}


Majd használjuk az elektrosztatika illetve az áramlási tér közötti betűcserés analógiákat:


=== 52. Feladat: Két toroid tekercs kölcsönös indukciója===
<math>
C' \leftrightarrow G'
</math>


Egy toroidra két tekercs van csévélve, az egyik menetszáma <math>N_1</math>, a másiké <math>N_2</math>. A toroid közepes sugara <math>r</math>,
<math>
keresztmetszetének felülete <math>A</math>, relatív permeabilitása <math>\mu_r</math>.<br/>Határozza meg a két tekercs kölcsönös induktivitását!
\varepsilon  \leftrightarrow \sigma
{{Rejtett
</math>
|mutatott='''Megoldás'''
|szöveg=


A kölcsönös induktivitás definíció szerint egyenlő az első tekercsnek a másodikra vonatkoztatott induktivitásával, valamint a második tekercsnek az első tekercse vonatkoztatott induktivitásával. Tehát elég csak az utóbbit meghatároznunk.
Amit áthelyettesítve megkapjuk a hosszegységre eső konduktanciát:


A második tekercsnek az elsőre vonatkoztatott kölcsönös induktivitása definíció szerint, a második tekercs árama által az első tekercsben indukált fluxus és a második tekercs áramának hányadosa feltéve, hogy az első tekercs árama zérus:
<math>
G' = {{2\pi \sigma } \over {\ln {{{r_2}} \over {{r_1}}}}}
</math>


<math>M=L_{21}=L_{12}=\frac{\Psi_1}{I_2} |_{(I_1=0)}</math>
Most kifejezzük a hosszegységre eső konduktanciát a szivárgási ellenállásból és a vezeték hosszából. Ha ez megvan akkor csak át kell rendezni a fajlagos vezetőképességre az egyenletet:


Szimmetria okokból a második tekercs árama által az első tekercsben indukált teljes fluxus egyenlő az első tekercs egyetlen menetében indukált fluxus N1-szeresével.
<math>
G = G'l = {1 \over R} \to G' = {1 \over R}{1 \over l}
</math>


<math>M= \frac{N_1\Phi_{1}}{I_2}</math>
<math>
G' = {{2\pi \sigma } \over {\ln {{{r_2}} \over {{r_1}}}}} = {1 \over R}{1 \over l} \to \sigma  = {{\ln {{{r_2}} \over {{r_1}}}} \over {2\pi }}{1 \over R}{1 \over l} = {ln {6 \over 2} \over 2 \pi} \cdot {1 \over 4 \cdot 10^6} \cdot {1 \over 200} \approx 218.6 \; {pS \over m}
</math>
}}


Az első tekercs egyetlen menetében, a második tekercs árama által indukált fluxust megkapjuk, ha a második tekercs árama által keltett mágneses mező indukcióvektorát integráljuk az első tekercs keresztmetszetén:


<math>M=\frac{N_1 \int_{A} \vec{B_2}\mathrm{d}\vec{s}}{I_2}</math>
=== 42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása ===
Stacionárius áramlási térben az áramsűrűség <math> \vec{J} = 5 \vec{e}_z \;{kA \over m^2} </math>. Mekkora a z-tengellyel 60°-os szöget bezáró <math> A=80 cm^2</math> felületen átfolyó áram?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát:


A mágneses indukcióvektor párhuzamos a toroid keresztmetszetének normálisával, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
<math>I = \int_A \vec{J} d \vec{s}</math>


<math>M=\frac{N_1 B_2 A}{I_2}</math>
Esetünkben a J áramsűrűség-vektor z irányú, így nekünk a felületre normális komponensével kell számolnunk:


A mágneses indukció definíció szerint kifejezhető a mágneses térerősséggel:
<math> I = J  A \sin60^\circ=5000 \cdot 80 \cdot 10^{-4} \cdot \sin60^\circ= 34.64 \; A</math>


<math>M=\frac{N_1 \mu_0 \mu_r H_2 A}{I_2}</math>
}}


A második tekercs árama által indukált mágneses térerősség az Ampere-féle gerjesztési törvénnyel megadható. Ha a toroid közepes sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített körlapon összesen N2-ször döfi át egy-egy I2 áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:
== Stacionárius mágneses tér ==
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).


<math>\oint_L \vec{H} \mathrm{d} \vec{l} = \sum{I}  </math>
A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
(ábra a megoldásnál)


<math> 2r \pi H_2= N_2 I_2  \longrightarrow  H_2={N_2 I_2\over 2r \pi}</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


[[File:Terek_szóbeli_feladatok_magnesesfelegyenes.jpg|300px]]
}}


Ezt felhasználva a két egymásra csévélt toroid tekercs kölcsönös induktivitása:
=== 50. Feladat: Két áramjárta vezető közötti erőhatás ===


<math>M=\frac{N_1 \mu_0 \mu_r N_2 I_2 A}{2r \pi I_2} = \frac{ \mu_0 \mu_r N_1 N_2 A}{2r \pi}</math>
Két egymással párhuzamos végtelen hosszú vezető egymástól <math>d=4m</math> távolságban helyezkedik el. Az egyiken <math>I_1=2A</math>, a másikon <math>I_2=3A</math> folyik.


Mekkora erő hat az egyik vezeték <math>l=1 m</math>-es szakaszára?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.


Csak a poén kedvéért ellenőrizzük a kapott eredményt dimenzióra is:
A mágneses térerősséget egy olyan L körvonalon integráljuk, ami által kifeszített A felület középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.


<math>\left[ {{H \over m} \cdot m^2 \over m} = H\right]</math>
<math>\oint_L \vec{H} \; d \vec{l} = \int_A \vec{J} \; d \vec{s} = I</math>


}}
<math>H_1 2 d \pi = I_1 \longrightarrow H_1 = \frac{I_1}{2 d \pi}</math>




=== 57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
Tudjuk még, hogy <math>B = \mu_0 H</math> vákuumban.


A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!<br/>Ha esetleg valaki kihúzná az "igazi" 57. feladatot, akkor írja be ennek a helyére, ezt pedig tegye a lap aljára ? feladatként. Köszi!


Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!
A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:


{{Rejtett
<math>\vec{F} = q \cdot (\vec{v} \times \vec{B} ) = I \cdot (\vec{l} \times \vec{B})</math>, ahol <math>I</math> a konstans áramerősség, <math>\vec{l}</math> pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.
|mutatott='''Megoldás'''
|szöveg=


A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!


Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
Innen a megoldás:


<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
<math>F_{12} = I_2 l B_1 = I_2 l \mu_0 H_1 = \frac{\mu_0 l I_1 I_2}{2 d \pi} = \frac{4 \pi 10^{-7} \cdot 1 \cdot 2 \cdot 3}{2 \cdot 4 \cdot \pi} = 3 \cdot 10^{-7} N</math>


Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, akkor taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:


<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
<math>F = 2 \cdot 10^{-7} N</math>
}}


<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>


<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
=== 52. Feladat: Két toroid tekercs kölcsönös indukciója===


Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
Egy toroidra két tekercs van csévélve, az egyik menetszáma <math>N_1</math>, a másiké <math>N_2</math>. A toroid közepes sugara <math>r</math>,
keresztmetszetének felülete <math>A</math>, relatív permeabilitása <math>\mu_r</math>.<br/>Határozza meg a két tekercs kölcsönös induktivitását!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
A kölcsönös induktivitás definíció szerint egyenlő az első tekercsnek a másodikra vonatkoztatott induktivitásával, valamint a második tekercsnek az első tekercse vonatkoztatott induktivitásával. Tehát elég csak az utóbbit meghatároznunk.


<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
A második tekercsnek az elsőre vonatkoztatott kölcsönös induktivitása definíció szerint, a második tekercs árama által az első tekercsben indukált fluxus és a második tekercs áramának hányadosa feltéve, hogy az első tekercs árama zérus:


A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
<math>M=L_{21}=L_{12}=\frac{\Psi_1}{I_2} |_{(I_1=0)}</math>


<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
Szimmetria okokból a második tekercs árama által az első tekercsben indukált teljes fluxus egyenlő az első tekercs egyetlen menetében indukált fluxus N1-szeresével.


}}
<math>M= \frac{N_1\Phi_{1}}{I_2}</math>


Az első tekercs egyetlen menetében, a második tekercs árama által indukált fluxust megkapjuk, ha a második tekercs árama által keltett mágneses mező indukcióvektorát integráljuk az első tekercs keresztmetszetén:


=== 58. Feladat: Toroid tekercs fluxusa és energiája===
<math>M=\frac{N_1 \int_{A} \vec{B_2}\mathrm{d}\vec{s}}{I_2}</math>
Hányszorosára változik egy <math>L</math> önindukciós együtthatóval rendelkező <math>I_1 = 2A</math> árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan <math>I_2 = 5A</math> -re növeljük?


Hányszorosára változik a tekercs mágneses mezejében tárolt energia?
A mágneses indukcióvektor párhuzamos a toroid keresztmetszetének normálisával, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.


Egy bármilyen tekercs fluxusa az <math>\Psi=LI</math> képletből számolható. Ez alapján a toroid fluxusváltozása:
<math>M=\frac{N_1 B_2 A}{I_2}</math>


<math>\frac{\Psi_2}{\Psi_1}=\frac{LI_2}{LI_1}=\frac{I_2}{I_1}=2.5</math>
A mágneses indukció definíció szerint kifejezhető a mágneses térerősséggel:


Egy bármilyen tekercs energiája számolható a <math>W=\frac{1}{2}LI^2</math> képlet alapján. Tehát a toroid energiaváltozása:
<math>M=\frac{N_1 \mu_0 \mu_r H_2 A}{I_2}</math>


<math>\frac{W_2}{W_1}=\frac{\frac{1}{2}L \cdot I_2^2}{\frac{1}{2}L \cdot I_1^2}=\frac{I_2^2}{I_1^2}=2.5^2=6.25</math>
A második tekercs árama által indukált mágneses térerősség az Ampere-féle gerjesztési törvénnyel megadható. Ha a toroid közepes sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített körlapon összesen N2-ször döfi át egy-egy I2 áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:
}}


<math>\oint_L \vec{H} \mathrm{d} \vec{l} = \sum{I}  </math>


=== 59. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény ===
<math> 2r \pi H_2= N_2 I_2  \longrightarrow  H_2={N_2 I_2\over 2r \pi}</math>


A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!


Adott egy kondenzátor, melynek fegyverzetei között egy <math>\sigma=50 {nS \over m}</math> fajlagos vezetőképességű dielektrikum helyezkedik el.
Ezt felhasználva a két egymásra csévélt toroid tekercs kölcsönös induktivitása:
A kondenzátor <math>A=100 cm^2</math> felületű fegyverzetei egymástól <math>d=20 mm</math> távolságra helyezkednek el. Határozza meg a dielektrikumban disszipált teljesítményt, ha a kondenzátor fegyverzeteire <math>U = 1.2 kV</math> feszültséget kapcsolunk.


{{Rejtett
<math>M=\frac{N_1 \mu_0 \mu_r N_2 I_2 A}{2r \pi I_2} = \frac{ \mu_0 \mu_r N_1 N_2 A}{2r \pi}</math>
|mutatott='''Megoldás'''
|szöveg=


A dielektrikum <math>G</math> konduktanciájának meghatározására alkalmazható stacionárius áramlási tér - elektrosztatika betűcserés analógia, mivel a két jelenséget ugyanolyan alakú differenciálegyenletek és azonos peremfeltételek írják le. Így elég csak a síkkondenzátor kapacitásának képletét ismernünk:


<math>G=C_{\varepsilon \leftarrow \sigma}=
Csak a poén kedvéért ellenőrizzük a kapott eredményt dimenzióra is:
\sigma {A \over d}=50 \cdot 10^{-9} \cdot {100 \cdot 10^{-4} \over 20 \cdot 10^{-3}}=2.5 \cdot 10^{-8} \;S</math>


 
<math>\left[ {{H \over m} \cdot m^2 \over m} = H\right]</math>
A dielektrikumban disszipált teljesítmény innét már könnyen számolható az ismert képlet alapján:
 
<math>P=U^2G=1200^2 \cdot 2.5 \cdot 10^{-8}=36 \; mW</math>


}}
}}




===61. Feladat: Toroid tekercs mágneses indukciója ===
=== 53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon===
 
Adott egy kör keresztmetszetű toroid alakú, <math>\mu_r = 1200</math> relatív permeabilitású, <math>N=200</math> menetes tekercs, melynek átlagos erővonal hossza <math>L=60cm</math>.<br/>A tekercselésben <math>I=0.3 A</math> nagyságú áram folyik.
 
Adja meg a mágneses indukció nagyságát a toroid belsejében! Miért ad jó értéket a közelítő számításunk?


Toroid alakú vasmagon egy <math>N_1=300</math> és egy <math>N_2=500</math> menetes tekercs helyezkedik el. Az <math>N_1</math> menetszámú tekercs öninduktivitása <math>L_1=0,9H</math>. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=  
|szöveg=


Az Ampere-féle gerjesztési törvényből következik, hogyha a toroid közepes sugarához sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor. Ez onnét látható, hogy ha veszünk a toroid tekercseléséből egyetlen menetet, akkor arra igaz, hogy a menet minden kis szakaszában folyó áram által keltett mágneses mező a jobbkéz-szabály (I - r - B) szerint a menet síkrája merőleges irányú mágneses térerősségvektort hoz létre.
}}


Tehát a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített A területű körlapot összesen N-ször döfi át egy-egy I áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s} </math>


<math> H \cdot L = N \cdot I  \longrightarrow  H = {N I \over L} \longrightarrow B =\mu_0 \mu_r {N I \over L}</math>
=== 57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===


Ha az átlagos erővonalhossz, vagyis a toroid közepes kerülete jóval nagyobb mint a toroid közepes sugara és a toroid külső és belső sugarának különbsége jóval kisebb mint a közepes sugár, akkor az erővonalak jó közelítéssel homogén sűrűségűek és szabályos koncentrikus köröket alkotnak. Ha ezek a feltételek teljesülnek, akkor fenti eredmény jó közelítéssel megadja a toroid teljes belsejében <math>\left( R_b<r<R_k \right)</math> a mágneses indukció nagyságát:
A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!<br/>Ha esetleg valaki kihúzná az "igazi" 57. feladatot, akkor írja be ennek a helyére, ezt pedig tegye a lap aljára ? feladatként. Köszi!


Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!


<math>B(r) =\mu_0 \mu_r {N I \over L} =4\pi \cdot 10^{-7} \cdot 1200 \cdot {200 \cdot 0.3 \over 0.6} \approx  0.151 \; T </math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


}}
A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!


Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>


=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>


Hosszú, <math>R</math> sugarú alumínium vezetőben <math>I</math> áram folyik.
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:


Határozza meg a vezető környezetében a mágneses teret! Mennyi mágneses energia raktározódik a vezető egység hosszú szakaszában?
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>


{{Rejtett
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>
|mutatott='''Megoldás'''
|szöveg=


Az Ampere-féle gerjesztési törvényt írjuk fel egy olyan zárt r sugarú, L körvonalra, amely által kifeszített A körlap merőleges a vezetékre és a vezeték tengelye pont a közepén döfi át.
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):


Szimmetria okokból a mágneses térerősségvektorok az L görbe minden pontjában érintő irányúak lesznek, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik minden esetben. Az egyenlet jobb oldala miatt viszont két esetre kell bontanunk a vizsgálódást:


<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>


'''1. Eset:''' Ha a vezetéken kívül vagyunk <math>(r>R)</math>, akkor az áramsűrűség felületintegrálja a vezeték teljes áramával egyenlő.
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>


<math>H(r) \cdot 2r\pi = I \longrightarrow  \vec{H}(r) = {I \over 2r\pi} \cdot \vec{e}_{\varphi}</math>
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:


<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>


'''2. Eset:''' Ha a vezetéken belül vagyunk <math>(r \leq R)</math>, akkor a teljes <math>I</math> áramnak csak a felületarányos része lesz az áramsűrűség integráljának eredménye.
}}
 
=== 58. Feladat: Toroid tekercs fluxusa és energiája===
Hányszorosára változik egy <math>L</math> önindukciós együtthatóval rendelkező <math>I_1 = 2A</math> árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan <math>I_2 = 5A</math> -re növeljük?
 
Hányszorosára változik a tekercs mágneses mezejében tárolt energia?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.


<math>H(r) \cdot 2r\pi = J \cdot r^2 \pi </math>
Egy bármilyen tekercs fluxusa az <math>\Psi=LI</math> képletből számolható. Ez alapján a toroid fluxusváltozása:


<math>H(r) \cdot 2r\pi = {I \over R^2 \pi} \cdot r^2 \pi \longrightarrow \vec{H}(r) =
<math>\frac{\Psi_2}{\Psi_1}=\frac{LI_2}{LI_1}=\frac{I_2}{I_1}=2.5</math>
{I \over 2R^2\pi} \cdot r \cdot \vec{e}_{\varphi}</math>


Egy bármilyen tekercs energiája számolható a <math>W=\frac{1}{2}LI^2</math> képlet alapján. Tehát a toroid energiaváltozása:


A vezeték egységnyi hosszában tárolt mágneses energia meghatározására az ismert összefüggés:
<math>\frac{W_2}{W_1}=\frac{\frac{1}{2}L \cdot I_2^2}{\frac{1}{2}L \cdot I_1^2}=\frac{I_2^2}{I_1^2}=2.5^2=6.25</math>
}}


<math>W_m={1 \over 2} \int_V \vec{H} \cdot \vec{B} \; \mathrm{d} V  </math>
=== 59. Feladat: Kölcsönös indukciós együttható meghatározása a Biot-Savart törvény segítségével ===


Mivel homogén közegben <math>\vec{B}=\mu \vec{H}</math>, azaz a vektorok egy irányba mutatnak minden pontban, így a skaláris szorzatuk megegyezik a vektorok nagyságának szorzatával. Azonban a mágneses térerősségvektor nagysága függ a sugártól, ezért célszerűen áttérünk hengerkoordináta-rendszerbe és ott végezzük el az integrálást:
Egy szabályos kör alakú <math>R</math> sugarú körvezetővel egy síkban, a körvezető középpontjában helyezkedik el egy <math>a</math> oldalhosszúságú négyzet alakú vezető keret. Határozza meg a két vezető keret kölcsönös indukciós együtthatóját a Biot-Savart törvény segítségével, ha <math>a << R</math> !


<math>W_m={1 \over 2}  \int_0^R \int_{0}^{2\pi} \int_0^1 \mu H^2(r) \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
{{Rejtett
{1 \over 2} \mu \int_0^R \int_{0}^{2\pi} \int_0^1 \left({I \over 2R^2\pi} \cdot r \right)^2 \;\mathrm{d}z \mathrm{d}\varphi \mathrm{d}r =  
|mutatott='''Megoldás'''
{\mu I^2 \over 8 R^4 \pi^2}  \int_0^R \int_{0}^{2\pi} \int_0^1 r^2 \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
|szöveg=
</math>


A kölcsönös indukciós együttható azt mutatja meg, hogy mekkora fluxust hoz létre egy vezető hurok árama egy másik vezető hurokban.


::<math>={\mu I^2 \over 8 R^4 \pi^2} \cdot 1 \cdot 2\pi \cdot  \int_0^R r^2 \; \mathrm{d} r =
Legyen a külső kör alakú vezetőben folyó áram <math>I</math>! Mivel <math>a << R</math>, ezért azt kell meghatározni, hogy ez az <math>I</math> áram mekkora mágneses térerősséget hoz létre a körvezető középpontjában, ahol a négyzetes vezető elhelyezkedik. Ezt a Biot-Savart törvénnyel meg lehet határozni, így megkapjuk <math>L_{1,2}= \frac{\phi_{2}}{I}</math> kölcsönös indukciós együttható értékét.
{\mu I^2 \over 4 R^4 \pi} \cdot  \left[ {r^3 \over 3} \right]_0^R=
{\mu I^2 \over 12 R^4 \pi} \cdot R^3 =
{\mu I^2 \over 12 R \pi} = {\mu_0 \mu_r I^2 \over 12 R \pi}
</math>


}}
A Biot-Savart törvény : <math>\mathbf{H} = \frac{I}{4\pi }\oint \frac{d\mathbf{l}\times \mathbf{r_{0}}}{r^{2}}</math>, ahol <math>r_{0}</math> az elemi <math>d\mathbf{l}</math> szakaszból a vizsgált pontba mutató egységvektor (fontos, hogy EGYSÉG-vektor, mert ha nem az egységvektorral számolunk, akkor a nevezőben nem négyzetes, hanem köbös a távolság). Mivel a vizsgált pont a körvezető középpontja, így a távolság végig <math>R</math> és a körintegrálás a körvezető keret kerületével való szorzássá egyszerűsödik:


<math>\mathbf{H} = \frac{I}{4\pi R^{2} } \cdot 2R\pi</math>


=== 65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség ===
<math>\mathbf{H} = \frac{I}{2R}</math>
Egy <math>r = 0.09m</math> sugarú vékony falú rézcső  belsejében, a tengelytől <math>d = 0.03m</math> távolságra, azzal párhuzamosan egy vékony rézvezeték helyezkedik el. Mindkét vezető elég hosszú és <math>I = 5A</math> nagyságú egyenáram folyik bennük, de ellenkező irányban. Mekkora az eredő mágneses térerősség nagysága a tengelyben?
 
{{Rejtett
<math>\mathbf{B} = \mu_{0} \mathbf{H}</math>
|mutatott='''Megoldás'''
|szöveg=A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s} = I</math>
<math>\phi = \int_{A}^{ } \mathbf{B} dA</math>


Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített A síkon csakis a vékony rézvezeték árama megy át.
Mivel <math>a << R</math> ezért volt elég a középpontban kiszámolni a térerősséget és a kis négyzetes vezető fluxusát így közelíteni:


<math>\phi_{2} = \mathbf{B} a^{2}</math>


Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
Végül mindent behelyettesítve: <math>L_{1,2}= \frac{\mu_{0} a^{2}}{2R}</math>


<math>H 2 d \pi = I \longrightarrow H = \frac{I}{2 d \pi}=\frac{5}{2  \cdot 0.03 \pi} \approx 26.53 \;{A \over m}</math>
}}
}}




== Távvezetékek (TV) ==
=== ???. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény ===


A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!
Eddig ez az 59.-es volt, de biztos nem ez a valódi sorszáma, 59. fentebb.


=== 68. Feladat: Mindkét végén nyitott ideális távvezeték rezonancia frekvenciája ===
Adott egy kondenzátor, melynek fegyverzetei között egy <math>\sigma=50 {nS \over m}</math> fajlagos vezetőképességű dielektrikum helyezkedik el.
 
A kondenzátor <math>A=100 cm^2</math> felületű fegyverzetei egymástól <math>d=20 mm</math> távolságra helyezkednek el. Határozza meg a dielektrikumban disszipált teljesítményt, ha a kondenzátor fegyverzeteire <math>U = 1.2 kV</math> feszültséget kapcsolunk.
Melyik az a legkisebb frekvencia, amelyen rezonancia léphet fel egy mindkét végén nyitott, <math>l=5km</math> hosszúságú, ideális légszigetelésű távvezetéken?


{{Rejtett
{{Rejtett
655. sor: 749. sor:
|szöveg=
|szöveg=


Rezonancia akkor lép fel egy ideális távvezetéken, ha a távvezeték bemeneti impedanciájával megegyező nagyságú és fázisú impedanciával zárjuk le a távvezeték elejét.
A dielektrikum <math>G</math> konduktanciájának meghatározására alkalmazható stacionárius áramlási tér - elektrosztatika betűcserés analógia, mivel a két jelenséget ugyanolyan alakú differenciálegyenletek és azonos peremfeltételek írják le. Így elég csak a síkkondenzátor kapacitásának képletét ismernünk:
 
<math>G=C_{\varepsilon \leftarrow \sigma}=
\sigma {A \over d}=50 \cdot 10^{-9} \cdot {100 \cdot 10^{-4} \over 20 \cdot 10^{-3}}=2.5 \cdot 10^{-8} \;S</math>


Az ideális távvezeték bemeneti impedanciája könnyen számítható az ismert képlet alapján, ha a távvezeték lezárása szakadás:


<math>Z_{be}=Z_0 \cdot {Z_2 + jZ_0 \tan(\beta l)\over Z_0 + jZ_2 \tan(\beta l) } </math>
A dielektrikumban disszipált teljesítmény innét már könnyen számolható az ismert képlet alapján:


<math>P=U^2G=1200^2 \cdot 2.5 \cdot 10^{-8}=36 \; mW</math>


<math>Z_2 \rightarrow \infty</math>
}}




<math>Z_{be} = \lim_{{Z_2}\to\infty} \left( Z_0 \cdot {Z_2 + jZ_0 \tan(\beta l)\over Z_0 + jZ_2 \tan(\beta l) }\right)=
===61. Feladat: Toroid tekercs mágneses indukciója ===
-jZ_0 \cdot {1 \over \tan(\beta l)} </math>


Adott egy kör keresztmetszetű toroid alakú, <math>\mu_r = 1200</math> relatív permeabilitású, <math>N=200</math> menetes tekercs, melynek átlagos erővonal hossza <math>L=60cm</math>.<br/>A tekercselésben <math>I=0.3 A</math> nagyságú áram folyik.


Mivel a távvezeték elejének lezárása is szakadás, így annak az impedanciája is végtelen, tehát a rezonancia kialakulásához a bemeneti impedanciának is végtelennek kell lennie. Ez akkor állhat elő, ha a bemeneti impedancia kifejezésének nevezője nulla:
Adja meg a mágneses indukció nagyságát a toroid belsejében! Miért ad jó értéket a közelítő számításunk?


<math>-jZ_0 \cdot {1 \over \tan(\beta l)} = \infty \;\;\; \longleftrightarrow \;\;\; tan(\beta l)=0</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=  


Az Ampere-féle gerjesztési törvényből következik, hogyha a toroid közepes sugarához sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor. Ez onnét látható, hogy ha veszünk a toroid tekercseléséből egyetlen menetet, akkor arra igaz, hogy a menet minden kis szakaszában folyó áram által keltett mágneses mező a jobbkéz-szabály (I - r - B) szerint a menet síkjára merőleges irányú mágneses térerősségvektort hoz létre.


<math>\beta l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>
Tehát a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített A területű körlapot összesen N-ször döfi át egy-egy I áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:


<math>k</math> azért csak pozitív egész szám lehet (képletszerűleg bármilyen egész szám jó lenne), mert ugye negatív frekvenciájú hullám nem létezik, valamint kérdéses, hogy a 0 frekvenciájú hullámot vagyis az egyengerjesztést elfogadjuk-e. Ha igen akkor ez a legkisebb frekvencia, ami teljesíti a feltételeket, ha nem akkor számolunk tovább:
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s} </math>


<math> H \cdot L = N \cdot I  \longrightarrow  H = {N I \over L} \longrightarrow B =\mu_0 \mu_r {N I \over L}</math>


<math>{2 \pi \over \lambda} \cdot l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>
Ha az átlagos erővonalhossz, vagyis a toroid közepes kerülete jóval nagyobb mint a toroid közepes sugara és a toroid külső és belső sugarának különbsége jóval kisebb mint a közepes sugár, akkor az erővonalak jó közelítéssel homogén sűrűségűek és szabályos koncentrikus köröket alkotnak. Ha ezek a feltételek teljesülnek, akkor fenti eredmény jó közelítéssel megadja a toroid teljes belsejében <math>\left( R_b<r<R_k \right)</math> a mágneses indukció nagyságát:




<math>{2 \pi f\over c} \cdot l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>
<math>B(r) =\mu_0 \mu_r {N I \over L} =4\pi \cdot 10^{-7} \cdot 1200 \cdot {200 \cdot 0.3 \over 0.6} \approx  0.151 \; T </math>


}}


<math> f = {k \cdot c\over 2l} \;\;\;\;\; k \in \mathbb{Z}^+</math>
===62. Feladat: Szolenoid tekercs mágneses indukciója ===


Adott: <math>A=5cm^2</math>, <math>N=1000</math>, <math>L=???</math>, <math>\mu_r =???</math>.


<math>f_{min} = {1 \cdot c\over 2l} = {3 \cdot 10^8 \over 2 \cdot 5000} = 30 \; kHz</math>
Adja meg a mágneses indukció nagyságát a Szolenoid belsejében!


=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===


A feladat más megközelítéssel is megoldható, bár szerintem az előbbi megoldás az egzaktabb, míg a második egy kicsit "fapadosabb", de kellően szép köntösben tálalva ez is tökéletes megoldás.
Hosszú, <math>R</math> sugarú alumínium vezetőben <math>I</math> áram folyik.


Emlékezzünk vissza, mit tanultunk a hullámjelenségekről: Rezonancia esetén olyan állóhullám alakul ki melyre igaz, hogy a szabad végeken (szakadás) maximumhelye, míg a rögzített végeken (rövidzár) csomópontja van.
Határozza meg a vezető környezetében a mágneses teret! Mennyi mágneses energia raktározódik a vezető egység hosszú szakaszában?


Keressük meg azt a legnagyobb hullámhosszt (azaz legkisebb frekvenciát), ami kielégíti ezen feltételeket. Segítségül egy kis ábra amin vázolva van az első pár lehetséges eset:
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


[[File:Terek_szóbeli_feladatok_rezonancia_ábra.png]]
Az Ampere-féle gerjesztési törvényt írjuk fel egy olyan zárt r sugarú, L körvonalra, amely által kifeszített A körlap merőleges a vezetékre és a vezeték tengelye pont a közepén döfi át.


Erről nagyon szépen látszik, hogy a legnagyobb kialakulható hullámhossz a távvezeték hosszának kétszerese lehet. Tehát:
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>


<math>\lambda_{max} = 2l \longrightarrow f_{min}={c \over \lambda_{max}} =
Szimmetria okokból a mágneses térerősségvektorok az L görbe minden pontjában érintő irányúak lesznek, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik minden esetben. Az egyenlet jobb oldala miatt viszont két esetre kell bontanunk a vizsgálódást:
{c \over 2l} = {3 \cdot 10^8 \over 2 \cdot 5000} = 30 \; kHz  </math>


}}


'''1. Eset:''' Ha a vezetéken kívül vagyunk <math>(r>R)</math>, akkor az áramsűrűség felületintegrálja a vezeték teljes áramával egyenlő.


=== 78. Feladat: Ideális távvezeték állóhullámarányának számítása ===
<math>H(r) \cdot 2r\pi = I \longrightarrow  \vec{H}(r) = {I \over 2r\pi} \cdot \vec{e}_{\varphi}</math>
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az <math>U(z) = (3+4j) \cdot e^{-j \beta z} + (2-j) \cdot e^{j \beta z}</math> függvény szerint változik. Adja meg az állóhullámarányt!


{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad --> - j*béta*z ) és a reflektált (negatív irányba halad --> + j*béta*z ) komponenseinek komplex amplitúdói:


<math>U^+ = 3+4j</math>
'''2. Eset:''' Ha a vezetéken belül vagyunk <math>(r \leq R)</math>, akkor a teljes <math>I</math> áramnak csak a felületarányos része lesz az áramsűrűség integráljának eredménye.


<math>U^- = 2-j</math>
<math>H(r) \cdot 2r\pi = J \cdot r^2 \pi </math>


''Megjegyzés:'' A feladat megadható úgy is, hogy U(x) függvényt adják meg. Ekkor a beeső komponenshez (U2+) tartozik a pozitív, a reflektálthoz (U2-) pedig a negatív hatványkitevő!
<math>H(r) \cdot 2r\pi = {I \over R^2 \pi} \cdot r^2 \pi \longrightarrow \vec{H}(r) =
{I \over 2R^2\pi} \cdot r \cdot \vec{e}_{\varphi}</math>




Kapcsolat a két fajta paraméterezés között:
A vezeték egységnyi hosszában tárolt mágneses energia meghatározására az ismert összefüggés:


<math>U_2^+ = U^+ e^{- \gamma l} \xrightarrow{ idealis TV} U^+ e^{- j \beta l} </math>
<math>W_m={1 \over 2} \int_V \vec{H} \cdot \vec{B} \; \mathrm{d} </math>


<math>U_2^- = U^- e^{ \gamma l} \xrightarrow{ idealis TV} U^- e^{ j \beta l} </math>
Mivel homogén közegben <math>\vec{B}=\mu \vec{H}</math>, azaz a vektorok egy irányba mutatnak minden pontban, így a skaláris szorzatuk megegyezik a vektorok nagyságának szorzatával. Azonban a mágneses térerősségvektor nagysága függ a sugártól, ezért célszerűen áttérünk hengerkoordináta-rendszerbe és ott végezzük el az integrálást (egy r szorzó bejön a Jacobi-determináns miatt):


<math>W_m={1 \over 2}  \int_0^R \int_{0}^{2\pi} \int_0^1 \mu H^2(r) \cdot r \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
{1 \over 2} \mu \int_0^R \int_{0}^{2\pi} \int_0^1 \left({I \over 2R^2\pi} \cdot r \right)^2 \cdot r \;\mathrm{d}z \mathrm{d}\varphi \mathrm{d}r =
{\mu I^2 \over 8 R^4 \pi^2}  \int_0^R \int_{0}^{2\pi} \int_0^1 r^3 \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
</math>


Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti "x" paraméterezéssel, majd ebből "z" szerinti paraméterezéssel:


<math>|r|=\left| {U_{reflektalt} \over U_{beeso}} \right|= \left| {U_2^- \over U_2^+ } \right|=\left| {U^- \over U^+ } e^{j2 \beta l} \right| = \left| {U^- \over U^+ } \right| =\left| {2-j \over 3+4j } \right| = {1 \over \sqrt{5}} \approx 0.447</math>
::<math>={\mu I^2 \over 8 R^4 \pi^2} \cdot 1 \cdot 2\pi \cdot  \int_0^R r^3 \; \mathrm{d} r =
{\mu I^2 \over 4 R^4 \pi} \cdot  \left[ {r^4 \over 4} \right]_0^R=
{\mu I^2 \over 16 R^4 \pi} \cdot R^4 =
{\mu I^2 \over 16 \pi} = {\mu_0 \mu_r I^2 \over 16 \pi}
</math>


}}


Ebből pedig már számolható a távvezeték állóhullámaránya:
=== 65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség ===
Egy <math>r = 0.09m</math> sugarú vékony falú rézcső  belsejében, a tengelytől <math>d = 0.03m</math> távolságra, azzal párhuzamosan egy vékony rézvezeték helyezkedik el. Mindkét vezető elég hosszú és <math>I = 5A</math> nagyságú egyenáram folyik bennük, de ellenkező irányban. Mekkora az eredő mágneses térerősség nagysága a tengelyben?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.


<math>\sigma = {1+|r] \over 1-|r| } = {1+0.447 \over 1-0.447 } \approx 2.62</math>
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s} = I</math>


}}
Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített A síkon csakis a vékony rézvezeték árama megy át.




=== 81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása ===
Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:


Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá.
<math>H 2 d \pi = I \longrightarrow H = \frac{I}{2 d \pi}=\frac{5}{\cdot 0.03 \pi} \approx 26.53 \;{A \over m}</math>
 
}}
Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség <math>U_0/2</math> lesz!


=== 66. Feladat: Végtelen, egyenes vezető, és vezetőkeret kölcsönös induktivitása. ===
Egy a = 0.05m oldalhosszúságú négyzet hossztengelyétől d = 0.12m távolságban (tehát két oldalával párhuzamosan, kettőre pedig merőlegesen, a vezetőkeret fölött), egy végtelen hosszúságú, <math>I</math> áramot szállító vezeték halad. Határozza meg az egyenes vezető és a vezetőkeret közötti kölcsönös indukció együtthatót!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg= A vezetőkeret két oldala, amelyek a végtelen hosszú vezetővel párhuzamosak, azonos távol vannak a vezetőkerettől. Mivel a mágneses indukció körkörösen, a jobbkéz-szabály szerint fogja körül a vezetőt, ezért a két átellenes oldalban pont ellenkező előjelű feszültség indukálódik, így kinullázzák egymást. Tehát 0 lesz a kölcsönös indukció.
Kijön számítás alapján is.


Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:
}}


<math>u(t,z)=|U^+| \cdot e^{- \alpha z} \cdot \cos(\omega t - \beta z + \varphi^+) \;+\;
== Távvezetékek (TV) ==
|U^-| \cdot e^{ \alpha z} \cdot \cos(\omega t + \beta z + \varphi^-)</math>




Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz <math>\omega =0</math>, ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát <math>\beta = 0</math>. Az egyenfeszültségből következik, hogy a <math>\varphi </math> kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.
=== 68. Feladat: Mindkét végén nyitott ideális távvezeték rezonancia frekvenciája ===


Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):
Melyik az a legkisebb frekvencia, amelyen rezonancia léphet fel egy mindkét végén nyitott, <math>l=5km</math> hosszúságú, ideális légszigetelésű távvezetéken?


<math>u(t,z)=U_0 \cdot e^{- \alpha z}</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Rezonancia akkor lép fel egy ideális távvezetéken, ha a távvezeték bemeneti impedanciájával megegyező nagyságú és fázisú impedanciával zárjuk le a távvezeték elejét.


Ebből látszik, hogy a kialakuló hullámforma egy <math>U_0</math>-tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.
Az ideális távvezeték bemeneti impedanciája könnyen számítható az ismert képlet alapján, ha a távvezeték lezárása szakadás:


A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (<math>\alpha</math>), feltéve hogy <math>\omega =0</math>, hiszen egyenfeszültséggel gerjesztjük a távvezetéket:
<math>Z_{be}=Z_0 \cdot {Z_2 + jZ_0 \tan(\beta l)\over Z_0 + jZ_2 \tan(\beta l) } </math>


<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R' \cdot G'} \right\}=\sqrt{R' \cdot G'}=\sqrt{0.02 \cdot 5 \cdot 10^{-6}}=3.16 \cdot 10^{-4} \;{1\over m}</math>


<math>Z_2 \rightarrow \infty</math>


Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:


<math>U_0 \cdot e^{-\alpha z}={U_0 \over 2}</math>
<math>Z_{be} = \lim_{{Z_2}\to\infty} \left( Z_0 \cdot {Z_2 + jZ_0 \tan(\beta l)\over Z_0 + jZ_2 \tan(\beta l) }\right)=
-jZ_0 \cdot {1 \over \tan(\beta l)} </math>


<math>e^{-\alpha z}=0.5</math>


<math>-\alpha z=\ln 0.5 \longrightarrow z=-{\ln 0.5 \over \alpha}=-{\ln 0.5 \over 3.16 \cdot 10^{-4}} \approx 2.192 \;km</math>
Mivel a távvezeték elejének lezárása is szakadás, így annak az impedanciája is végtelen, tehát a rezonancia kialakulásához a bemeneti impedanciának is végtelennek kell lennie. Ez akkor állhat elő, ha a bemeneti impedancia kifejezésének nevezője nulla:
}}


<math>-jZ_0 \cdot {1 \over \tan(\beta l)} = \infty \;\;\; \longleftrightarrow \;\;\; tan(\beta l)=0</math>


=== 82. Feladat: Ideális távvezeték bemeneti impedanciája ===


Egy ideális, légszigetelésű <math>l</math> hosszúságú, <math>Z_0</math> hullámimpedanciájú távvezeték vezetett hullámhossza pedig <math>\lambda = 8l</math>
<math>\beta l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>


Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy <math>L={Z_0 \over \omega}</math> induktivitású ideális tekercs?
<math>k</math> azért csak pozitív egész szám lehet (képletszerűleg bármilyen egész szám jó lenne), mert ugye negatív frekvenciájú hullám nem létezik, valamint kérdéses, hogy a 0 frekvenciájú hullámot vagyis az egyengerjesztést elfogadjuk-e. Ha igen akkor ez a legkisebb frekvencia, ami teljesíti a feltételeket, ha nem akkor számolunk tovább:


{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Tudjuk, hogy: <math>\beta = {2 \pi \over \lambda} \longrightarrow  (\beta l)={2 \pi \over \lambda}l ={2 \pi \over 8l}l = {\pi \over 4} </math>
<math>{2 \pi \over \lambda} \cdot l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>




A lezáró tekercs impedanciája: <math>Z_2=j \omega L = j \omega {Z_0 \over \omega}=j Z_0</math>
<math>{2 \pi f\over c} \cdot l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>




Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:
<math> f = {k \cdot c\over 2l} \;\;\;\;\; k \in \mathbb{Z}^+</math>




<math>
<math>f_{min} = {1 \cdot c\over 2l} = {3 \cdot 10^8 \over 2 \cdot 5000} = 30 \; kHz</math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } =
Z_0 {j Z_0 + j Z_0 tg\left({\pi \over 4}\right) \over Z_0 + j j Z_0 tg\left({\pi \over 4}\right) } =
j Z_0 {1 + tg\left({\pi \over 4}\right) \over 1 - tg\left({\pi \over 4}\right) } =
j Z_0 {1 + 1 \over 1 - 1 } =
j Z_0 \cdot {2 \over 0 } \longrightarrow \infty
</math>




A kapott eredményen nem kell meglepődni. Jelen paraméterek mellett a távvezeték bemeneti impedanciája végtelenül nagy.
A feladat más megközelítéssel is megoldható, bár szerintem az előbbi megoldás az egzaktabb, míg a második egy kicsit "fapadosabb", de kellően szép köntösben tálalva ez is tökéletes megoldás.


}}
Emlékezzünk vissza, mit tanultunk a hullámjelenségekről: Rezonancia esetén olyan állóhullám alakul ki melyre igaz, hogy a szabad végeken (szakadás) maximumhelye, míg a rögzített végeken (rövidzár) csomópontja van.


Keressük meg azt a legnagyobb hullámhosszt (azaz legkisebb frekvenciát), ami kielégíti ezen feltételeket. Segítségül egy kis ábra amin vázolva van az első pár lehetséges eset:


=== 86. Feladat: Számolás az ideális TV lánckarakterisztikájának I. egyenletével===
[[File:Terek_szóbeli_feladatok_rezonancia_ábra.png]]
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \Omega</math>, hossza pedig <math>\frac{\lambda}{8}</math>. A távvezeték végén adott az áram és a feszültség komplex amplitúdója: <math>2A</math> illetve <math>500V</math>.<br/>Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow  (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>


Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:
Erről nagyon szépen látszik, hogy a legnagyobb kialakulható hullámhossz a távvezeték hosszának kétszerese lehet. Tehát:


<math>U_1 = \cos (\beta l) \cdot U_2 \;+\; j \cdot \sin(\beta l) \cdot Z_0 \cdot I_2 =
<math>\lambda_{max} = 2l \longrightarrow f_{min}={c \over \lambda_{max}} =
\cos \left( {\pi \over 4} \right)\cdot500 \;+\; j \cdot \sin \left( {\pi \over 4} \right) \cdot 50 \cdot 2 \approx (354 + j70.7)V</math>
{c \over 2l} = {3 \cdot 10^8 \over 2 \cdot 5000} = 30 \; kHz  </math>


}}
}}


 
=== 70. Feladat: Szakadással lezárt TV áram amplitúdó nagysága ===
=== 87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével===
Egy ideális légszigetelésű TV ismert hullámimpedanciája 500 Ohm. A távvezeték végén a szakadáson mért feszültség amplitúdója <math> U{_{2}}^{} = 180 V </math>. Mekkora a távvezeték végétől <math> x = 500 </math> méterre az áramerősség amplitúdója, ha tudjuk, hogy a frekvencia 1 MHz.
 
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \; \Omega</math>, hossza pedig <math>\frac{\lambda}{3}</math>. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója <math>j150 \; V</math>.<br/>Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A megoldás menete: Ideális a TV és légszigetelésű ezért a <math> \beta = \frac{2\pi }{\lambda } </math> és mivel légszigetelésű a vezeték <math> \lambda = \frac{c}{f} </math>.


Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 3} = \frac{2\pi}{3}</math>
Felírjuk a Heimholtz egyenleteket a TV végére:


<math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{j\beta l} </math>


Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:
<math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{j\beta l} </math>


<math>I_1 = j \cdot {1 \over Z_0} \cdot \sin (\beta l) \cdot U_2 \;+\; \cos (\beta l) \cdot I_2 =
<math> l = 500m </math>
j \cdot {1 \over 50} \cdot \sin \left( \frac{2\pi}{3} \right) \cdot j150 \;+\; \cos \left( \frac{2\pi}{3} \right)\cdot 0 =
-3 \cdot \sin \left( \frac{2\pi}{3} \right) \approx -2.6 \; A </math>


}}
<math> r = 1 </math>


A reflexiós tényező a távvezeték végén:


=== 88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye ===
<math> r = \frac{U_{2}^{-}}{U_{2}^{+}} = \frac{U^{-} * e^{j\beta l}}{U^{+} * e^{-j\beta l}} </math>


Egy ideális távvezeték hullámimpedanciája <math>Z_0 = 400 \; \Omega</math>, lezárása pedig egy <math>Z_2 = -j400 \; \Omega</math> reaktanciájú kondenzátor. A távvezeték fázisegyütthatója <math>\beta = 0.2 \; {1 \over m} </math>.
Ebből kifejezve <math> U^{-} = U^{+} * e^{-j2\beta l} </math>


Adja meg a bemeneti impedanciát a lezárástól való <math>x</math> távolság függvényében.
Ezt visszaírva a Heimholtz megoldásába:
Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.
 
<math> U(z=l) = {U^{+}} * e^{-j\beta l} + U^{+} * e^{-j2\beta l}  = 180V </math>
 
Ebből ki tudjuk fejezni <math> U^{+}-t \;\; és \;\; U^{-}-t </math> Amit visszaírva az egyenletbe a további paramétereket megkapjuk az áram amplitúdóját.
 
}}
 
=== 72. Feladat: Lecher vezeték hullámimpedanciájának számítása ===
Egy ideális Lecher vezeték hullámimpedanciája kezdetben 400 ohm. Eltávolítjuk egymástól a vezetékpárt, ekkor a vezeték hosszegységre jutó soros impedanciája 1,5-szeresére nő. Mennyi lesz ekkor a vezeték hullámimpedanciája?


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A megoldás menete: Mivel ideális a TV, a fázissebesség c, azaz a fénysebesség. Tudjuk, hogy <math>c = \frac{1}{\sqrt{L'\cdot C'}}</math>.
A hullámimpedancia pedig <math>Z_{0}  = \sqrt{\frac{L^{'}}{C^{'}}}</math>. Rendezgetéssel ezzel a két képlettel kijön.


A bemeneti impedancia a hely függvényében egyszerűen megadható, ha az ideális távvezeték bemeneti impedanciájának általános képletében az <math>l</math> hossz helyébe általánosan <math>x</math> változót írunk, ahol <math>x</math> a lezárástól való távolságot jelöli.
}}


''Megjegyzés:'' Arra az esetre, ha mégis rákérdeznének, hogy ez mégis honnan jött, célszerű lehet átnézni a jegyzetből az ideális távvezeték lánckarakterisztikájának levezetését, csak l helyébe x-et kell írni és ugyanazzal a gondolatmenettel levezethető ez a képlet.
=== 73. Feladat: Ideális TV lezárásának számítása ===


<math>Z_{be}(x) = Z_0 \cdot {Z_2 + j Z_0 tg \left( \beta x \right) \over Z_0 + jZ_2 tg \left( \beta x \right)}</math>
Egy ideális távvezetek hullámimpedanciája <math>Z_{0}=50\Omega</math>. Az állóhullámarány <math>\sigma =3</math>, a TV lezárása egy ''R'' rezisztancia. ''R'' milyen értékeket vehet fel? Ha a lezárást kicseréljük egy ''C'' kondenzátorra, milyen értékűnek válasszuk, hogy az állóhullámarány megmaradjon? (<math>\omega = 10^{5} \frac{1}{s})</math>


{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


A bemeneti impedancia csakis akkor lehet 0, ha a fenti képletben a számláló is szintén 0.
Az állóhullámarány és a reflexiós tényező kapcsolata: <math>\sigma = \frac{1+\left | r \right |}{1-\left | r \right |} = 3</math>


<math>Z_2 + jZ_0 tg \left( \beta x \right) = 0 </math>
Ebből  <math>\left | r \right | = \frac{1}{2} </math>, tehát <math>r = \pm \frac{1}{2}</math>




<math>-j400 + j400 tg \left( 0.2 \cdot x \right) = 0 </math>
Tudjuk, hogy <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{R-Z_{0}}{R+Z_{0}}</math>, kifejezve ''R''-t, adódik, hogy: <math>R = \frac{Z_{0} + rZ_{0}}{1-r}</math>.


ha <math>r = \frac{1}{2}</math>, akkor <math>R = 16.67\Omega</math>.


<math>tg \left( 0.2 \cdot x \right) = 1 </math>
ha <math>r = -\frac{1}{2}</math>, akkor <math>R = 150\Omega</math>.




::::<math>\updownarrow</math>
Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le:
ez egy kedves becsapós kérdés, mert amennyiben <math>Z_{2} = \frac{1}{j\omega C}</math>, akkor <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{\frac{1}{j\omega C}-Z_{0}}{\frac{1}{j\omega C}+Z_{0}}</math>.


Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az <math>r =1</math>-et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor.


<math>0.2 \cdot x = {\pi \over 4} + k \cdot \pi</math>


<math>x = 1.25\pi + k \cdot 5\pi \;\;\;\; \left[ m \right] </math>


}}




== Indukálási jelenségek ==


}}


=== 94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke ===
=== 78. Feladat: Ideális távvezeték állóhullámarányának számítása ===
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az <math>U(z) = (3+4j) \cdot e^{-j \beta z} + (2-j) \cdot e^{j \beta z}</math> függvény szerint változik. Adja meg az állóhullámarányt!


Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\Phi(t)=30 \cdot \sin(\omega t) \;mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=Az indukálási törvény alapján:
|szöveg=
A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad <math>\rightarrow - j \beta z </math> ) és a reflektált (negatív irányba halad <math>\rightarrow + j \beta z </math> ) komponenseinek komplex amplitúdói:


<math>u_i(t)=-{d\Phi(t) \over dt}=-\omega \cdot 0.03 \cdot \cos(\omega t) =-30 \cdot \cos(\omega t) \;V</math>
<math>U^+ = 3+4j</math>


<math>U^- = 2-j</math>


Innen a feszültség effektív értéke:
''Megjegyzés:'' A feladat megadható úgy is, hogy <math>U(x)</math> függvényt adják meg. Ekkor a beeső komponenshez (<math>U_2^+</math>) tartozik a pozitív, a reflektálthoz (<math>U_2^-</math>) pedig a negatív hatványkitevő!


<math>U_{eff}={30 \over \sqrt 2} \approx 21.21 \;V</math>


Kapcsolat a két fajta paraméterezés között:


Az áram effektív értéke pedig:
<math>U_2^+ = U^+ e^{- \gamma l} \xrightarrow{ idealis TV} U^+ e^{- j \beta l} </math>


<math> I_{eff}={U_{eff} \over R}= {{30 \over \sqrt{2}} \over 5} = {6 \over \sqrt 2} \approx 4.24 \;A</math>
<math>U_2^- = U^- e^{ \gamma l} \xrightarrow{ idealis TV} U^- e^{ j \beta l} </math>
}}




=== 95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye ===
Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti <math>x</math> paraméterezéssel, majd ebből <math>z</math> szerinti paraméterezéssel:


Adott egy <math>R</math> ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: <math>\Phi (t) = \Phi_0 + \Phi_1 \cdot \sin(\omega t)</math>.
<math>|r|=\left| {U_{reflektalt} \over U_{beeso}} \right|= \left| {U_2^- \over U_2^+ } \right|=\left| {U^- \over U^+ } e^{j2 \beta l}  \right| = \left| {U^- \over U^+ } \right| =\left| {2-j \over 3+4j } \right| = {1 \over \sqrt{5}} \approx 0.447</math>


Adja meg a a gyűrűben indukált áram <math>i(t)</math> időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.


Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.
Ebből pedig már számolható a távvezeték állóhullámaránya:


{{Rejtett
<math>\sigma = {1+|r] \over 1-|r| } = {1+0.447 \over 1-0.447 } \approx 2.62</math>
|mutatott='''Megoldás'''
|szöveg=


Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel: 
}}


<math>u_i(t)={d\Phi(t) \over dt}= \Phi_1 \cdot \omega  \cdot \cos(\omega t)</math>
=== 81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása ===


Ebből az áram időfüggvénye: <math>R={U \over I} \longrightarrow i(t)={u_i(t) \over R}={\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá.


Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.
Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség <math>U_0/2</math> lesz!


Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Az indukált áram időfüggvénye tehát: <math>i(t)=-{\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>
Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:


}}
<math>u(t,z)=|U^+| \cdot e^{- \alpha z} \cdot \cos(\omega t - \beta z + \varphi^+) \;+\;
|U^-| \cdot e^{ \alpha z} \cdot \cos(\omega t + \beta z + \varphi^-)</math>




=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===
Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz <math>\omega =0</math>, ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát <math>\beta = 0</math>. Az egyenfeszültségből következik, hogy a <math>\varphi </math> kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.  


Az xy síkon helyezkedik el egy <math>r=3m</math> sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense <math>\Delta t=40ms</math> idő alatt <math>B=0.8T</math> értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?
Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):


{{Rejtett
<math>u(t,z)=U_0 \cdot e^{- \alpha z}</math>
|mutatott='''Megoldás'''
|szöveg=


Az indukálási törvény alapján:


<math>u_i=-{d\Phi(t) \over dt}=-A \cdot { dB(t) \over dt}=
Ebből látszik, hogy a kialakuló hullámforma egy <math>U_0</math>-tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.
-r^2\pi \cdot { \Delta B\over \Delta t}=-r^2\pi \cdot {B_2-B_1\over\Delta t}=
- 3^2\pi \cdot {0-0.8\over0.04}=565.5 \;V </math>


}}
A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (<math>\alpha</math>), feltéve hogy <math>\omega =0</math>, hiszen egyenfeszültséggel gerjesztjük a távvezetéket:


<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R' \cdot G'} \right\}=\sqrt{R' \cdot G'}=\sqrt{0.02 \cdot 5 \cdot 10^{-6}}=3.16 \cdot 10^{-4} \;{1\over m}</math>
Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:
<math>U_0 \cdot e^{-\alpha z}={U_0 \over 2}</math>
<math>e^{-\alpha z}=0.5</math>
<math>-\alpha z=\ln 0.5 \longrightarrow z=-{\ln 0.5 \over \alpha}=-{\ln 0.5 \over 3.16 \cdot 10^{-4}} \approx 2.192 \;km</math>
}}


=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===


Egy hosszú egyenes vezetőtől <math>d=15 m</math> távolságban egy <math>r=0,25 m</math> sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.
=== 82. Feladat: Ideális távvezeték bemeneti impedanciája ===
 
Egy ideális, légszigetelésű <math>l</math> hosszúságú, <math>Z_0</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = 8l</math>


Mekkora az indukált feszültség, ha a vezetőben folyó áram <math>50 {A \over \mu s}</math> sebességgel változik.
Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy <math>L={Z_0 \over \omega}</math> induktivitású ideális tekercs?


{{Rejtett
{{Rejtett
967. sor: 1 088. sor:
|szöveg=
|szöveg=


Az indukálási törvény alapján:
Tudjuk, hogy: <math>\beta = {2 \pi \over \lambda} \longrightarrow  (\beta l)={2 \pi \over \lambda}l ={2 \pi \over 8l}l = {\pi \over 4}  </math>


<math>u_i=-{\mathrm{d}\Phi(t) \over \mathrm{d} t}=-A \cdot { \mathrm{d}B(t) \over \mathrm{d} t}=
-A \mu_0 \cdot { \mathrm{d}H(t) \over \mathrm{d} t}</math>


A hosszú egyenes áramjárta vezető környezetében a mágneses térerősségvektor az Ampere-féle gerjesztési törvénnyel meghatározható. Ha a mágneses térerősséget egy <math>d</math> sugarú zárt <math>L</math> kör mentén integrálunk, amely által kifeszített <math>A</math> területű körlapot a közepén merőlegesen döfi át a vezeték, akkor a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
A lezáró tekercs impedanciája: <math>Z_2=j \omega L = j \omega {Z_0 \over \omega}=j Z_0</math>


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>


<math>H \cdot 2d\pi = I \longrightarrow H = {I \over 2d\pi}</math>
Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:




Ezt behelyettesítve az indukált feszültség képletébe:
<math>
 
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } =
<math>u_i=-A \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
Z_0 {j Z_0 + j Z_0 tg\left({\pi \over 4}\right) \over Z_0 + j j Z_0 tg\left({\pi \over 4}\right) } =
- r^2 \pi \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
j Z_0 {1 + tg\left({\pi \over 4}\right) \over 1 - tg\left({\pi \over 4}\right) } =
- {r^2 \mu_0 \over 2d} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
j Z_0 {1 + 1 \over 1 - 1 } =
- {0.25^2 \cdot 4\pi \cdot 10^{-7} \over 2 \cdot 15} \cdot 50 \cdot 10^6 \approx -130.9 \; mV
j Z_0 \cdot {2 \over 0 } \longrightarrow \infty
</math>
</math>




''Megjegyzés:'' Természetesen ez csak egy jó közelítés, hiszen a vezető keret mentén nem állandó nagyságú a mágneses térerősség változása, mivel az függ a vezetőtől való távolságtól is. Azonban a közepes távolságot véve, csak kismértékű hibát vétünk.
A kapott eredményen nem kell meglepődni. Jelen paraméterek mellett a távvezeték bemeneti impedanciája végtelenül nagy.
 


}}
}}


=== 83. Feladat: Ideális távvezeték meddő teljesítménye ===


=== 101. Feladat: Zárt vezetőhurokban indukált feszültség===
Egy ideális, légszigetelésű <math>l=83.2m</math> hosszúságú, <math>Z_0 = 50\Omega</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = 75\;m</math>. A távvezeték bemenetére egy <math>U = 100V</math> amplitúdójú, <math>\omega</math> körfrekvenciájú feszültséggenerátort kapcsolunk, miközben szakadással zárjuk le a másik oldalt.
 
Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: <math>\Phi(t)=\Phi_0 \cdot {t^2 \over T}, \;\; ha \;\;0<t<T</math>.


Mekkora lesz az indukált feszültség nagysága amikor <math>t=T/3</math>?
Mekkora a távvezeték által felvett meddő teljesítmény?


{{Rejtett
{{Rejtett
1 004. sor: 1 120. sor:
|szöveg=
|szöveg=


Az indukálási törvény alapján:
A távvezeték helyettesíthető egyetlen <math>Z_{be}</math> nagyságú impedanciával figyelembe véve azt, hogy a lezáró <math>Z_2</math> impedancia a szakadás miatt végtelen nagyságú.


<math>u_i(t)=-{d \Phi(t) \over dt}= -{2 \Phi_0 \over T} \cdot  t</math>
<math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } \longrightarrow
{ Z_0 \over  j tg(\beta l)}
</math>




Behelyettesítve a <math>t=T/3</math> értéket:
Ezzel a helyettesítéssel már egyszerűen számolható a kapcsolás komplex látszólagos teljesítménye:


<math>u_i\left(t= {T \over 3} \right)= -{2 \Phi_0 \over T} \cdot {T \over 3}=-{2\over 3} \Phi_0</math>
<math>
S = {1 \over 2} U I^* =
{1 \over 2} U { \left( {U \over Z_{be}} \right) }^* =  
{1 \over 2} |U|^2 { 1\over Z_{be}^*} =
{1 \over 2} |U|^2 {\left( { j tg(\beta l) \over Z_0} \right)}^* =
-j{1 \over 2} |U|^2 {tg(\beta l) \over Z_0} =
-j{1 \over 2} |U|^2 {tg({2 \pi \over \lambda}l) \over Z_0}
</math>


}}


A távvezeték által felvett meddő teljesítmény a komplex látszólagos teljesítményének imaginárius részével egyezik meg:


== Elektromágneses síkhullám jó vezetőben ==
<math>
Q = Im \left\{ S \right\} =
-{1 \over 2} |U|^2 {tg({2 \pi \over \lambda}l) \over Z_0} =
-{1 \over 2} \cdot 100^2 \cdot {tg({2 \pi \over 75}\cdot 83.2) \over 50} \approx -82.024 \; Var
</math>
}}
 
=== 85. Feladat: Távvezeték állóhullámaránya ===


Egy távvezeték hullámimpedanciája <math>500 \Omega </math>, a vezeték végén a feszültség és az áram amplitúdója 1kV és 2A. Mit mondhatunk a reflexiós tényezőről? Mekkora a távvezetéken az állóhullámarány lehető legkisebb értéke?


=== 105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa ===
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Egy <math>r</math> sugarú hengeres vezető anyagban a behatolási mélység <math>\delta<<r</math>. A henger felszínén az elektromos térerősség amplitúdója <math>E_0</math>, kezdőfázisa pedig <math>0 \; rad</math>.
<math>\frac{1 kV}{2 A} = 500 \Omega</math>. Ez csak az abszolút értéke az impedanciának (amplitúdók voltak csak adottak a fázisok nem). Ebből felírva a két szélső helyzetet(<math>Z_{2} = 500 \Omega </math> vagy <math>Z_{2} = j \cdot 500 \Omega </math>):
Adódik, hogy a reflexiós tényező abszolútértéke 1 és 0 között változik. Ebből pedig behelyettesítve az állóhullámarány képletébe látszik hogy az végtelen és egy között változik. Így annak lehető legkisebb értéke 1.


A felszíntől <math>h</math> távolságban térerősség amplitúdója <math>{E_0 \over 2}</math>. Mennyi ilyenkor a fázisa a térerősségnek?
}}


=== 86. Feladat: Számolás az ideális TV lánckarakterisztikájának I. egyenletével===
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \Omega</math>, hossza pedig <math>\frac{\lambda}{8}</math>. A távvezeték végén adott az áram és a feszültség komplex amplitúdója: <math>2A</math> illetve <math>500V</math>.<br/>Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow  (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>


Tudjuk, hogy a hogy vezető anyagokban az elektromos térerősség komplex amplitúdója a mélység (z) függvényében:
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:


<math>E(z) = E_0 \cdot e^{- \gamma z}</math>
<math>U_1 = \cos (\beta l) \cdot U_2 \;+\; j \cdot \sin(\beta l) \cdot Z_0 \cdot I_2 =
\cos \left( {\pi \over 4} \right)\cdot500 \;+\; j \cdot \sin \left( {\pi \over 4} \right) \cdot 50 \cdot 2 \approx (354 + j70.7)V</math>


}}


<math>\gamma = {1+j \over \delta}  \longrightarrow E(z) = E_0 \cdot e^{-z/\delta} \cdot e^{-jz/\delta}</math>


Ebből a képletből kifejezhető az elektromos térerősség komplex amplitúdójának nagysága (abszolút értéke):
=== 87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével===


<math>\left| E(z) \right|=  E_0 \cdot e^{-z/\delta}</math>
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \; \Omega</math>, hossza pedig <math>\frac{\lambda}{3}</math>. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója <math>j150 \; V</math>.<br/>Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!


Behelyettesítve a megadott adatokat:
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math>\left| E(h) \right| =  E_0 \cdot e^{-h/\delta} = {E_0 \over 2}</math>
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 3} = \frac{2\pi}{3}</math>


<math>-{h \over \delta} = ln(0.5)</math>


Most fejezzük ki a fentebbi képletből az elektromos térerősség komplex amplitúdójának fázisát:
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:


<math>arg \left\{ E(z) \right\} = -{z \over \delta}</math>
<math>I_1 = j \cdot {1 \over Z_0} \cdot \sin (\beta l) \cdot U_2 \;+\; \cos (\beta l) \cdot I_2 =
j \cdot {1 \over 50} \cdot \sin \left( \frac{2\pi}{3} \right) \cdot j150 \;+\; \cos \left( \frac{2\pi}{3} \right)\cdot 0 =
-3 \cdot \sin \left( \frac{2\pi}{3} \right) \approx -2.6 \; A </math>


Behelyettesítve a megadott adatokat, majd az imént kiszámolt <math>-{h \over \delta}</math> arányt:
}}


<math> arg \left\{ E(h) \right\} = - {h \over \delta} = - ln(0.5) \approx 0.693 \; rad </math>


=== 88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye ===


}}
Egy ideális távvezeték hullámimpedanciája <math>Z_0 = 400 \; \Omega</math>, lezárása pedig egy <math>Z_2 = -j400 \; \Omega</math> reaktanciájú kondenzátor. A távvezeték fázisegyütthatója <math>\beta = 0.2 \; {1 \over m} </math>.


Adja meg a bemeneti impedanciát a lezárástól való <math>x</math> távolság függvényében.
Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.


=== 107. Feladat: Hengeres vezetőben disszipált hőteljesítmény ===
Egy <math>A=1.5 mm^2</math> keresztmetszetű, <math>l=3m</math> hosszú hengeres vezetőben <math>I=10A</math> amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység <math> \delta = 9.7 mm</math>, a fajlagos vezetőképesség pedig <math> \sigma = 3.7 \cdot 10^7 {S \over m}</math>. Mennyi a vezetőben disszipált hőteljesítmény?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=A vezető sugara: <math>r=\sqrt{{1.5\over\pi}}=0.691mm<<\delta</math>
|szöveg=


Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima <math>l</math> hosszúságú, <math>A</math> keresztmetszetű és <math> \sigma</math> fajlagos vezetőképességű vezetékdarabnak.
A bemeneti impedancia a hely függvényében egyszerűen megadható, ha az ideális távvezeték bemeneti impedanciájának általános képletében az <math>l</math> hossz helyébe általánosan <math>x</math> változót írunk, ahol <math>x</math> a lezárástól való távolságot jelöli.


<math>R={1 \over \sigma}{l \over A}={1 \over 3.7 \cdot 10^{7}} \cdot {3 \over 1.5 \cdot 10^{-6}} \approx 54 \;m\Omega</math>
''Megjegyzés:'' Arra az esetre, ha mégis rákérdeznének, hogy ez mégis honnan jött, célszerű lehet átnézni a jegyzetből az ideális távvezeték lánckarakterisztikájának levezetését, csak l helyébe x-et kell írni és ugyanazzal a gondolatmenettel levezethető ez a képlet.


A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):
<math>Z_{be}(x) = Z_0 \cdot {Z_2 + j Z_0 tg \left( \beta x \right)  \over Z_0 + jZ_2 tg \left( \beta x \right)}</math>


<math>P={1\over2}RI^2={1\over2} \cdot 0.054 \cdot 10^2 \approx 2.7 \;W</math>


}}
A bemeneti impedancia csakis akkor lehet 0, ha a fenti képletben a számláló is szintén 0.


<math>Z_2 + jZ_0 tg \left( \beta x \right) = 0 </math>


=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
Egy <math>r=2mm</math> sugarú, hosszú hengeres vezető <math>\sigma=35 {MS \over m}</math> fajlagos vezetőképességű anyagból van, a behatolási mélység <math>\delta =80 \mu m</math>. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10 \cdot \cos(\omega t) \cdot \vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Mivel: <math>\delta << r </math>


<math>-j400 + j400 tg \left( 0.2 \cdot x \right) = 0 </math>


Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:


<math>E(z)=E_0 \cdot e^{-\gamma z}=
<math>tg \left( 0.2 \cdot x \right) = 1 </math>
E_0 \cdot e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta}</math>




A differenciális Ohm-törvény: <math>\vec{J}=\sigma \cdot \vec{E }</math>
::::<math>\updownarrow</math>




Ezeket egybefésülve és áttérve időtartományba:
<math>0.2 \cdot x = {\pi \over 4} + k \cdot \pi</math>


<math>\vec{J}(z,t)=Re \left\{  \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta} \cdot  e^{j \omega t} \right\} \cdot \vec{n}_0 = \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot \cos \left( \omega t - {z \over \delta} \right) \cdot \vec{n}_0 </math>
<math>x = 1.25\pi + k \cdot 5\pi \;\;\;\; \left[ m \right] </math>


}}


Behelyettesítés után, <math>z= 2 \delta</math> mélységben:
== Indukálási jelenségek ==


<math>\vec{J}(t)= 35 \cdot 10^6 \cdot 10 \cdot e^{-2 \delta / \delta} \cdot \cos \left( \omega t - {2 \delta \over \delta} \right) \cdot \vec{n}_0 = 47.37 \cdot \cos \left( \omega t - 2 \right) \cdot \vec{n}_0 \;{MA \over m^2}</math>


}}
=== 94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke ===


 
Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\Phi(t)=30 \cdot \sin(\omega t) \;mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
===111. Feladat: Behatolási mélység===
Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=Az indukálási törvény alapján:
<math> \gamma = \alpha + j\beta </math> terjedési együttható


<math> \alpha </math> - csillapítási tényező
<math>u_i(t)=-{d\Phi(t) \over dt}=-\omega \cdot 0.03 \cdot \cos(\omega t) =-30 \cdot \cos(\omega t) \;V</math>


<math> \beta </math> - fázistényező


<math> \delta = \frac{1}{\alpha} </math> behatolási mélység
Innen a feszültség effektív értéke:


<math>U_{eff}={30 \over \sqrt 2} \approx 21.21 \;V</math>


Vezető anyagokban <math> \alpha = \beta </math> , mivel:


<math> \gamma = \sqrt{j\omega\mu (\sigma + j\omega\varepsilon)} </math>, azonban vezető anyagokban <math> \varepsilon <<  \sigma </math>, így a terjedési együttható: <math> \gamma \approx \sqrt{j\omega\mu\sigma} = \sqrt{j}\sqrt{\omega\mu\sigma} </math>
Az áram effektív értéke pedig:


<math> \sqrt{j} = \sqrt{e^{j \pi/2}} = e^{j \pi/4} = \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} </math>
<math> I_{eff}={U_{eff} \over R}= {{30 \over \sqrt{2}} \over 5} = {6 \over \sqrt 2} \approx 4.24 \;A</math>
}}


<math> \gamma = \sqrt{\frac{\omega\mu\sigma}{2}} + j\sqrt{\frac{\omega\mu\sigma}{2}} </math>


=== 95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye ===


Ebből <math> \delta </math> számításának módja:
Adott egy <math>R</math> ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: <math>\Phi (t) = \Phi_0 + \Phi_1 \cdot \sin(\omega t)</math>.
 
Adja meg a a gyűrűben indukált áram <math>i(t)</math> időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.
 
Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math> \delta = \frac{1}{\alpha} = \frac{1}{\beta} = \sqrt{\frac{2}{\omega\mu\sigma}} </math> (de most nem ezt kell használni)
Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel: 


<math>u_i(t)={d\Phi(t) \over dt}= \Phi_1 \cdot \omega  \cdot \cos(\omega t)</math>


A térerősség amplitúdójának nagysága a vezetőben: <math> E(z) = E_0 e^{-\alpha z} = E_0 e^{-z/\delta} </math>
Ebből az áram időfüggvénye: <math>R={U \over I} \longrightarrow i(t)={u_i(t) \over R}={\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


<math> E_0 e^{- (0.003\ \text{m})/\delta} = \frac{1}{2} E_0 </math>
Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.


<math> \delta = -\frac{0.003\ \text{m}}{\ln{\frac{1}{2}}} \approx 4.328\ \text{mm} </math>
Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.


<math> \alpha = \beta = \frac{1}{\delta} \approx 231\ \frac{1}{\text{m}}</math>
Az indukált áram időfüggvénye tehát: <math>i(t)=-{\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


}}
}}




===112. Feladat: Vezető közeg hullámimpedanciája===
=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===
Egy <math>\mu_r=1</math> relatív permeabilitású vezetőben <math> \omega = 10^4 {1 \over s}</math> körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami <math> \left| \gamma \right| = 5 \; {1 \over mm}</math>.


Mi a hullámimpedancia abszolút értéke?
Az xy síkon helyezkedik el egy <math>r=3m</math> sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense <math>\Delta t=40ms</math> idő alatt <math>B=0.8T</math> értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?


{{Rejtett
{{Rejtett
1 153. sor: 1 296. sor:
|szöveg=
|szöveg=


Tudjuk, hogy a terjedési együttható: <math>\gamma = \sqrt{ j \omega \mu \cdot \left( \sigma + j \omega \varepsilon \right) }</math>
Az indukálási törvény alapján:


<math>u_i=-{d\Phi(t) \over dt}=-A \cdot { dB(t) \over dt}=
-r^2\pi \cdot { \Delta B\over \Delta t}=-r^2\pi \cdot {B_2-B_1\over\Delta t}=
- 3^2\pi \cdot {0-0.8\over0.04}=565.5 \;V </math>


Mivel a közeg ó vezetés és relatíve alacsony körfrekvenciájú a síkhullám, így: <math> \sigma >> \omega \varepsilon </math>
}}




A terjedési együttható, így egyszerűsíthető:
=== 99. Feladat: Zárt vezetőhurokban disszipálódó összes energia ===
<math> \gamma = \sqrt{ j \omega \mu \sigma } =
\sqrt{ j} \cdot \sqrt{ \omega \mu \sigma } =
{ 1 + j \over \sqrt{2} } \cdot \sqrt{ \omega \mu \sigma }</math>


R ellenállású zárt vezetőkeret fluxusa <math>0 < t < T</math> intervallumban ismert <math>\Phi(t)</math> szerint változik. Fejezze ki az intervallumban a keretben disszipálódó összes energiát!


Mivel ismerjük a terjedési együttható abszolút értékét, ebből a képletből kifejezhető a közeg fajlagos vezetőképessége:
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math>\left| \gamma \right| =
Az indukálási törvény alapján:
\left| { 1 + j \over \sqrt{2} } \right| \cdot \sqrt{ \omega \mu \sigma }=
\sqrt{ \omega \mu \sigma } \longrightarrow
\sigma = { {\left| \gamma \right| }^2 \over \mu \omega}</math>


<math>u_i=-{d\Phi(t) \over dt}</math>


A hullámimpedancia képlete szintén egyszerűsíthető, figyelembe véve, hogy vezető közeg esetén: <math> \sigma >> \omega \varepsilon </math>
Továbbá:


<math>Z_0 = \sqrt{{ j \omega \mu \over \sigma + j \omega \varepsilon }} \approx
<math> P = { U^2 \over R } </math>
\sqrt{{ j \omega \mu \over \sigma}} =
\sqrt{{ j \omega \mu \over { {\left| \gamma \right| }^2 \over \mu \omega}}}=
\sqrt{j} \cdot {\omega \mu \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {\omega \mu_0 \mu_r \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {10^4 \cdot 4\pi \cdot 10^{-7} \cdot 1 \over 5 \cdot 10^3} \approx
2.513 \; \cdot \; e^{j \cdot (\pi / 2)} \; \mu \Omega </math>


}}
Ezt integrálni kell 0-tól T-ig, 1/T előtaggal.


(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)


== Elektromágneses hullám szigetelőben==
(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó)
 
}}


=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===


=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
Egy hosszú egyenes vezetőtől <math>d=15 m</math> távolságban egy <math>r=0,25 m</math> sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.


Egy adott <math>\mu_r=5</math> relatív permeabilitású közegben síkhullám terjed <math>\omega = 10 {Mrad \over s}</math> körfrekvenciával. A terjedési együttható értéke: <math>\gamma = 0.1 \cdot j \;{1 \over m}</math><br /> Adja meg a közeg hullámellenállásának értékét!
Mekkora az indukált feszültség, ha a vezetőben folyó áram <math>50 {A \over \mu s}</math> sebességgel változik.


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.
|szöveg=


Az indukálási törvény alapján:


<math> Z_0 = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \varepsilon }} </math>
<math>u_i=-{\mathrm{d}\Phi(t) \over \mathrm{d} t}=-A \cdot { \mathrm{d}B(t) \over \mathrm{d} t}=
-A \mu_0 \cdot { \mathrm{d}H(t) \over \mathrm{d} t}</math>  


<math> \gamma = \sqrt{j \omega \mu \cdot (\sigma +j \omega \varepsilon) } </math>
A hosszú egyenes áramjárta vezető környezetében a mágneses térerősségvektor az Ampere-féle gerjesztési törvénnyel meghatározható. Ha a mágneses térerősséget egy <math>d</math> sugarú zárt <math>L</math> kör mentén integrálunk, amely által kifeszített <math>A</math> területű körlapot a közepén merőlegesen döfi át a vezeték, akkor a vonalintegrál egy egyszerű szorzássá egyszerűsödik:


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>


Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a második képletet négyzetre emelve, majd rendezve kapjuk:
<math>H \cdot 2d\pi = I \longrightarrow H = {I \over 2d\pi}</math>


<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math>


Ezt behelyettesítve az első egyenlet nevezőjébe:
Ezt behelyettesítve az indukált feszültség képletébe:


<math> Z_0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math>
<math>u_i=-A \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
 
- r^2 \pi \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
A gyökvonás elvégzése után az eredményt megadó formula:
- {r^2 \mu_0 \over 2d} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {0.25^2 \cdot 4\pi \cdot 10^{-7} \over 2 \cdot 15} \cdot 50 \cdot 10^6 \approx -130.9 \; mV
</math>




<math> Z_0 = \frac{j \omega \mu}{\gamma} = {j 10^7 \cdot 5 \cdot 4 \pi \cdot 10^{-7}  \over j 0.1}=628.3 \;\Omega</math>
''Megjegyzés:'' Természetesen ez csak egy jó közelítés, hiszen a vezető keret mentén nem állandó nagyságú a mágneses térerősség változása, mivel az függ a vezetőtől való távolságtól is. Azonban a közepes távolságot véve, csak kismértékű hibát vétünk.


Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math>


}}
}}




=== 125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye ===
=== 101. Feladat: Zárt vezetőhurokban indukált feszültség===


Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, ideális szigetelő közeg határfelületére.<br/>A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója <math>H=0.3 \; {A \over m}</math>.
Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: <math>\Phi(t)=\Phi_0 \cdot {t^2 \over T}, \;\; ha \;\;0<t<T</math>.


Adja meg a határfelület <math>3 \; m^2</math> nagyságú felületén átáramló hatásos teljesítmény!
Mekkora lesz az indukált feszültség nagysága amikor <math>t=T/3</math>?


{{Rejtett
{{Rejtett
1 231. sor: 1 376. sor:
|szöveg=
|szöveg=


Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
Az indukálási törvény alapján:


<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} \</math>
<math>u_i(t)=-{d \Phi(t) \over dt}= -{2 \Phi_0 \over T} \cdot  t</math>


Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:


<math>P=Re \left\{ {S} \right\} \cdot A</math>
Behelyettesítve a <math>t=T/3</math> értéket:


<math>u_i\left(t= {T \over 3} \right)= -{2 \Phi_0 \over T} \cdot {T \over 3}=-{2\over 3} \Phi_0</math>


A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos mind a mágneses térerősség amplitúdója.
}}


Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:


== Elektromágneses síkhullám jó vezetőben ==


<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>


=== 105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa ===


Felhasználva, hogy a szigetelőben <math>E = H \cdot Z_{0}' </math>, majd rendezve az egyenletet:
Egy <math>r</math> sugarú hengeres vezető anyagban a behatolási mélység <math>\delta<<r</math>. A henger felszínén az elektromos térerősség amplitúdója <math>E_0</math>, kezdőfázisa pedig <math>0 \; rad</math>.


 
A felszíntől <math>h</math> távolságban térerősség amplitúdója <math>{E_0 \over 2}</math>. Mennyi ilyenkor a fázisa a térerősségnek?
<math>P= {1 \over 2} \cdot H  \cdot \left( H \cdot Z_{0}' \right)  \cdot A =
{1 \over 2} \cdot H^2 \cdot Z_{0}'  \cdot A = {1 \over 2} \cdot 0.3^2 \cdot 200  \cdot 3 = 27 \; W
</math>
 
}}
 
 
=== 126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy <math>A=2m^2</math> nagyságú felületén disszipálódó hatásos teljesítmény <math>P=10W</math>. Mekkora az elektromos térerősség amplitúdója a szigetelőben?


{{Rejtett
{{Rejtett
1 266. sor: 1 401. sor:
|szöveg=
|szöveg=


Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
Tudjuk, hogy a hogy vezető anyagokban az elektromos térerősség komplex amplitúdója a mélység (z) függvényében:


<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} \</math>
<math>E(z) = E_0 \cdot e^{- \gamma z}</math>




Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
<math>\gamma = {1+j \over \delta}  \longrightarrow E(z) = E_0 \cdot e^{-z/\delta} \cdot e^{-jz/\delta}</math>


<math>P=Re \left\{ {S} \right\} \cdot A</math>
Ebből a képletből kifejezhető az elektromos térerősség komplex amplitúdójának nagysága (abszolút értéke):


<math>\left| E(z) \right|=  E_0 \cdot e^{-z/\delta}</math>


A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos, mind a mágneses térerősség amplitúdója.
Behelyettesítve a megadott adatokat:


Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
<math>\left| E(h) \right| =  E_0 \cdot e^{-h/\delta} = {E_0 \over 2}</math>


<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
<math>-{h \over \delta} = ln(0.5)</math>


Felhasználva, hogy a szigetelőben <math>H = {E \over Z_{0}'} </math>, majd rendezve az egyenletet:
Most fejezzük ki a fentebbi képletből az elektromos térerősség komplex amplitúdójának fázisát:
 
<math>arg \left\{ E(z) \right\} = -{z \over \delta}</math>
 
Behelyettesítve a megadott adatokat, majd az imént kiszámolt <math>-{h \over \delta}</math> arányt:


<math> arg \left\{ E(h) \right\} = - {h \over \delta} = - ln(0.5) \approx 0.693 \; rad </math>


<math>P= {1 \over 2} \cdot E \cdot {E \over Z_{0}' } \cdot A =
{E^2 \over 2 \cdot Z_{0}' } \cdot A \longrightarrow E =
\sqrt{{2PZ_{0}' \over  A} } = \sqrt{{2 \cdot 10 \cdot 200 \over  2} } \approx 44.72 \;{V \over m} </math>


}}
}}




=== 129. Feladat: Elektromágneses síkhullám közeghatáron ===
=== 106. Feladat: Koaxiális kábel váltóáramú ellenállása ===


<math>\varepsilon_r = 2.25</math> relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.<br/>A határfelületen az elektromos térerősség amplitúdója <math>E=250\; {V \over m}</math>.
Egy koaxiális kábel magjának sugara <math>r_1 = 2mm</math>, a köpenyének belső sugara <math>r_2 = 6 mm</math>, a külső sugara pedig <math>r_3 = 7 mm</math>. A mag és a köpeny vezetőképessége egyaránt <math>\sigma = 57 MS</math>. A behatolási mélység a kábelre kapcsolt generátor frekvenciáján <math>\delta = 102 \mu m</math>.


Adja meg a <math>H^+</math> értékét a közeghatáron, az első közegben.
Adja meg az elrendezés hosszegységre eső váltóáramú ellenállását.


{{Rejtett
{{Rejtett
1 302. sor: 1 440. sor:
|szöveg=
|szöveg=


A megoldás során a távvezeték analógiát fogjuk felhasználni.
A koaxiális kábel erővonalképe:


Először meg kell határoznunk a szigetelő reflexiós tényezőjét, ha a "lezárás" levegő:
[[File:Terek_106_Feladat.PNG | 300px ]]


<math>r={Z_{0,l} - Z_{0,sz} \over Z_{0,l} + Z_{0,sz}}=
Az elektromos térerősség mind a magban, mind pedig a köpenyben <math>e^{- z / \delta }</math> függvény szerint csökken.
{Z_{0,l} - Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }\over Z_{0,l} + Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }}=
{\sqrt{\varepsilon_r} - 1 \over \sqrt{\varepsilon_r} +1}=
{\sqrt{2.25} -1 \over \sqrt{2.25} +1} = 0.2 </math>


Mivel a behatolási mélység nagyságrenddel kisebb, mint a kábel méretei, így ellenállás szempontjából olyan, mintha csak egy-egy <math>\delta</math> vastagságú keresztmetszeten folyna egyenáram mind a magban, mind pedig a köpenyben. Az eredő váltóáramú ellenállás pedig ezen két egyenáramú ellenállás összege:


A folytonossági feltételből következik, hogy a határfelületen az elektromos térerősség amplitúdója nem változhat meg:
<math>
R_{AC} = R_{DC,m} + R_{DC,k} =
{1 \over \sigma} { l \over A_1 } + {1 \over \sigma} { l \over A_2 } \approx
{1 \over \sigma} { l \over 2 r_1 \pi \delta } + {1 \over \sigma} { l \over 2 r_2 \pi \delta } =
{l \over \sigma \cdot 2 \pi \delta} \left( { 1 \over r_1 } + { 1 \over r_2 } \right)
</math>


<math>E^+_l = E^+_{sz} + E^-_{sz} = E^+_{sz} \cdot (1+r)</math>


<math>H^+_{sz} = {E^+_{sz} \over Z_{0,sz}} \longrightarrow E^+_{sz} = H^+_{sz} \cdot Z_{0,sz}</math>
Ebből a hosszegységre eső váltóáramú ellenállás:


<math>E^+_l = H^+_{sz} \cdot Z_{0,sz} \cdot (1+r) \longrightarrow
<math>
H^+_{sz} = {E^+_l \over Z_{0,sz} \cdot (1+r)}=
R_{AC,l} = {1 \over \sigma \cdot 2 \pi \delta} \cdot \left( { 1 \over r_1 } + { 1 \over r_2 } \right) =
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
{1 \over 57 \cdot 10^6 \cdot 2 \pi \cdot 102 \cdot 10^{-6}} \cdot \left( { 1 \over 0.002 } + { 1 \over 0.006 } \right) =
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
18.25 \; m\Omega
}}
</math>
 
 
 
}}
== Poynting-vektor ==
 
 
=== 107. Feladat: Hengeres vezetőben disszipált hőteljesítmény ===
 
Egy <math>A=1.5 mm^2</math> keresztmetszetű, <math>l=3m</math> hosszú hengeres vezetőben <math>I=10A</math> amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység <math> \delta = 9.7 mm</math>, a fajlagos vezetőképesség pedig <math> \sigma = 3.7 \cdot 10^7 {S \over m}</math>. Mennyi a vezetőben disszipált hőteljesítmény?
=== 137. Feladat:  Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása===
{{Rejtett
 
|mutatott='''Megoldás'''
Levegőben síkhullám terjed a pozitív <math>z</math> irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga <math>w = 9 \; {\mu J \over m^3}</math>.
|szöveg=A vezető sugara: <math>r=\sqrt{{1.5\over\pi}}=0.691mm<<\delta</math>
 
 
Adja meg a Poynting-vektor időbeli átlagát!
Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima <math>l</math> hosszúságú, <math>A</math> keresztmetszetű és <math> \sigma</math> fajlagos vezetőképességű vezetékdarabnak.
 
 
{{Rejtett
<math>R={1 \over \sigma}{l \over A}={1 \over 3.7 \cdot 10^{7}} \cdot {3 \over 1.5 \cdot 10^{-6}} \approx 54 \;m\Omega</math>
|mutatott='''Megoldás'''
 
|szöveg=
A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):
 
 
A Poynting-vektor időbeli átlaga felírható az energiasűrűség időbeli átlagának és a fénysebességnek a szorzataként:
<math>P={1\over2}RI^2={1\over2} \cdot 0.054 \cdot 10^2 \approx 2.7 \;W</math>
 
 
<math>S = w \cdot c \approx
}}
9 \cdot 10^{-6} \; {J \over m^3} \cdot 3 \cdot 10^8 \; {m \over s} =
 
2.7 \; {kW \over m^2}</math>
 
 
=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
 
Egy <math>r=2mm</math> sugarú, hosszú hengeres vezető <math>\sigma=35 {MS \over m}</math> fajlagos vezetőképességű anyagból van, a behatolási mélység <math>\delta =80 \mu m</math>. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10 \cdot \cos(\omega t) \cdot \vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Másik megoldás, ha valaki esetleg nem ismerné a fenti magic képletet:
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
 
{{Rejtett
Az elektromos energiasűrűség időbeli átlaga levegőben definíció szerint felírható az alábbi módon:
|mutatott='''Megoldás'''
 
|szöveg=
<math>w = {1 \over 2} \varepsilon_0 E_{x0}^2 \; \longrightarrow \; E_{x0} =
Mivel: <math>\delta << r </math>
 
 
Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:
 
<math>E(z)=E_0 \cdot e^{-\gamma z}=
E_0 \cdot e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta}</math>
 
 
A differenciális Ohm-törvény: <math>\vec{J}=\sigma \cdot \vec{E }</math>
 
 
Ezeket egybefésülve és áttérve időtartományba:
 
<math>\vec{J}(z,t)=Re \left\{  \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta} \cdot  e^{j \omega t} \right\} \cdot \vec{n}_0 = \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot \cos \left( \omega t - {z \over \delta} \right) \cdot \vec{n}_0 </math>
 
 
Behelyettesítés után, <math>z= 2 \delta</math> mélységben:
 
<math>\vec{J}(t)= 35 \cdot 10^6 \cdot 10 \cdot e^{-2 \delta / \delta} \cdot \cos \left( \omega t - {2 \delta \over \delta} \right) \cdot \vec{n}_0 = 47.37 \cdot \cos \left( \omega t - 2 \right) \cdot \vec{n}_0 \;{MA \over m^2}</math>
 
}}
 
 
===111. Feladat: Behatolási mélység===
Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
<math> \gamma = \alpha + j\beta </math> terjedési együttható
 
<math> \alpha </math> - csillapítási tényező
 
<math> \beta </math> - fázistényező
 
<math> \delta = \frac{1}{\alpha} </math> behatolási mélység
 
 
Vezető anyagokban <math> \alpha = \beta </math> , mivel:
 
<math> \gamma = \sqrt{j\omega\mu (\sigma + j\omega\varepsilon)} </math>, azonban vezető anyagokban <math> \varepsilon <<  \sigma </math>, így a terjedési együttható: <math> \gamma \approx \sqrt{j\omega\mu\sigma} = \sqrt{j}\sqrt{\omega\mu\sigma} </math>
 
<math> \sqrt{j} = \sqrt{e^{j \pi/2}} = e^{j \pi/4} = \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} </math>
 
<math> \gamma = \sqrt{\frac{\omega\mu\sigma}{2}} + j\sqrt{\frac{\omega\mu\sigma}{2}} </math>
 
 
Ebből <math> \delta </math> számításának módja:
 
<math> \delta = \frac{1}{\alpha} = \frac{1}{\beta} = \sqrt{\frac{2}{\omega\mu\sigma}} </math> (de most nem ezt kell használni)
 
 
A térerősség amplitúdójának nagysága a vezetőben: <math> E(z) = E_0 e^{-\alpha z} = E_0 e^{-z/\delta} </math>
 
<math> E_0 e^{- (0.003\ \text{m})/\delta} = \frac{1}{2} E_0 </math>
 
<math> \delta = -\frac{0.003\ \text{m}}{\ln{\frac{1}{2}}} \approx 4.328\ \text{mm} </math>
 
<math> \alpha = \beta = \frac{1}{\delta} \approx 231\ \frac{1}{\text{m}}</math>
 
}}
 
 
===112. Feladat: Vezető közeg hullámimpedanciája===
Egy <math>\mu_r=1</math> relatív permeabilitású vezetőben <math> \omega = 10^4 {1 \over s}</math> körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami <math> \left| \gamma \right| = 5 \; {1 \over mm}</math>.
 
Mi a hullámimpedancia abszolút értéke?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy a terjedési együttható: <math>\gamma = \sqrt{ j \omega \mu \cdot \left( \sigma + j \omega \varepsilon \right) }</math>
 
 
Mivel a közeg jó vezető és relatíve alacsony körfrekvenciájú a síkhullám, így: <math> \sigma >> \omega \varepsilon </math>
 
 
A terjedési együttható, így egyszerűsíthető:
<math> \gamma = \sqrt{ j \omega \mu \sigma } =
\sqrt{ j} \cdot \sqrt{ \omega \mu \sigma } =
{ 1 + j \over \sqrt{2} } \cdot \sqrt{ \omega \mu \sigma }</math>
 
 
Mivel ismerjük a terjedési együttható abszolút értékét, ebből a képletből kifejezhető a közeg fajlagos vezetőképessége:
 
<math>\left| \gamma \right| =
\left| { 1 + j \over \sqrt{2} } \right| \cdot \sqrt{ \omega \mu \sigma }=
\sqrt{ \omega \mu \sigma } \longrightarrow
\sigma = { {\left| \gamma \right| }^2 \over \mu \omega}</math>
 
 
A hullámimpedancia képlete szintén egyszerűsíthető, figyelembe véve, hogy vezető közeg esetén:  <math> \sigma >> \omega \varepsilon </math>
 
<math>Z_0 = \sqrt{{ j \omega \mu \over \sigma + j \omega \varepsilon }} \approx
\sqrt{{ j \omega \mu \over \sigma}} =
\sqrt{{ j \omega \mu \over { {\left| \gamma \right| }^2 \over \mu \omega}}}=
\sqrt{j} \cdot {\omega \mu \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {\omega \mu_0 \mu_r \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {10^4 \cdot 4\pi \cdot 10^{-7} \cdot 1 \over 5 \cdot 10^3} \approx
2.513 \; \cdot \; e^{j \cdot (\pi / 2)} \; \mu \Omega </math>
 
}}
 
=== 114. Feladat: Teljesítményváltozás ===
Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!
 
 
=== 116. Disszipált teljesítmény alumíniumvezetőben ===
 
Egy hengeres <math> r = 2mm </math> sugarú és <math> L = 8m </math> hosszúságú alumínium vezetőben <math> I = 3A </math> amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység <math> \delta = 60 \mu m </math> , határozza meg a vezető által disszipált teljesítményt, ha <math> \sigma = 35*10^6 S/m </math>!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Mivel a vizsgáztatóm azt mondta a megoldásomra, hogy rossz. de közben áttértünk a tételre, nem írnék le rossz megoldást.
}}
 
== Elektromágneses hullám szigetelőben==
 
=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
 
Egy adott <math>\mu_r=5</math> relatív permeabilitású közegben síkhullám terjed <math>\omega = 10 {Mrad \over s}</math> körfrekvenciával. A terjedési együttható értéke: <math>\gamma = 0.1 \cdot j \;{1 \over m}</math><br /> Adja meg a közeg hullámellenállásának értékét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.
 
 
<math> Z_0 = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \varepsilon }} </math>
 
<math> \gamma = \sqrt{j \omega \mu \cdot (\sigma +j \omega \varepsilon) } </math>
 
 
Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a második képletet négyzetre emelve, majd rendezve kapjuk:
 
<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math>
 
Ezt behelyettesítve az első egyenlet nevezőjébe:
 
<math> Z_0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math>
 
A gyökvonás elvégzése után az eredményt megadó formula:
 
 
<math> Z_0 = \frac{j \omega \mu}{\gamma} = {j 10^7 \cdot 5 \cdot 4 \pi \cdot 10^{-7}  \over j 0.1}=628.3 \;\Omega</math>
 
Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math>
 
}}
=== 120. Feladat: Felületen átáramló hatásos teljesítmény számítása ===
 
Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldás ismeretlen.
 
}}
 
 
=== 125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, ideális szigetelő közeg határfelületére.<br/>A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója <math>H=0.3 \; {A \over m}</math>.
 
Adja meg a határfelület <math>3 \; m^2</math> nagyságú felületén átáramló hatásos teljesítmény!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
 
<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} </math>
 
Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
 
<math>P=Re \left\{ {S} \right\} \cdot A</math>
 
 
A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos mind a mágneses térerősség amplitúdója.
 
Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
 
 
<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
 
 
Felhasználva, hogy a szigetelőben <math>E = H \cdot Z_{0}' </math>, majd rendezve az egyenletet:
 
 
<math>P= {1 \over 2} \cdot H  \cdot \left( H \cdot Z_{0}' \right)  \cdot A =
{1 \over 2} \cdot H^2 \cdot Z_{0}'  \cdot A = {1 \over 2} \cdot 0.3^2 \cdot 200  \cdot 3 = 27 \; W
</math>
 
}}
 
=== 126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy <math>A=2m^2</math> nagyságú felületén disszipálódó hatásos teljesítmény <math>P=10W</math>. Mekkora az elektromos térerősség amplitúdója a szigetelőben?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
 
<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} </math>
 
 
Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
 
<math>P=Re \left\{ {S} \right\} \cdot A</math>
 
 
A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos, mind a mágneses térerősség amplitúdója.
 
Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
 
<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
 
Felhasználva, hogy a szigetelőben <math>H = {E \over Z_{0}'} </math>, majd rendezve az egyenletet:
 
 
<math>P= {1 \over 2} \cdot E \cdot {E \over Z_{0}' } \cdot A =
{E^2 \over 2 \cdot Z_{0}' } \cdot A \longrightarrow E =
\sqrt{{2PZ_{0}' \over  A} } = \sqrt{{2 \cdot 10 \cdot 200 \over  2} } \approx 44.72 \;{V \over m} </math>
 
}}
 
=== 129. Feladat: Elektromágneses síkhullám közeghatáron ===
 
<math>\varepsilon_r = 2.25</math> relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.<br/>A határfelületen az elektromos térerősség amplitúdója <math>E=250\; {V \over m}</math>.
 
Adja meg a <math>H^+</math> értékét a közeghatáron, az első közegben.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A megoldás során a távvezeték analógiát fogjuk felhasználni.
 
Először meg kell határoznunk a szigetelő reflexiós tényezőjét, ha a "lezárás" levegő:
 
<math>r={Z_{0,l} - Z_{0,sz} \over Z_{0,l} + Z_{0,sz}}=
{Z_{0,l} - Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }\over Z_{0,l} + Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }}=
{\sqrt{\varepsilon_r} - 1 \over \sqrt{\varepsilon_r} +1}=
{\sqrt{2.25} -1 \over \sqrt{2.25} +1} = 0.2 </math>
 
 
A folytonossági feltételből következik, hogy a határfelületen az elektromos térerősség amplitúdója nem változhat meg:
 
<math>E^+_l = E^+_{sz} + E^-_{sz} = E^+_{sz} \cdot (1+r)</math>
 
<math>H^+_{sz} = {E^+_{sz} \over Z_{0,sz}} \longrightarrow E^+_{sz} = H^+_{sz} \cdot Z_{0,sz}</math>
 
<math>E^+_l = H^+_{sz} \cdot Z_{0,sz} \cdot (1+r) \longrightarrow
H^+_{sz} = {E^+_l \over Z_{0,sz} \cdot (1+r)}=
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
}}
 
=== 130. Feladat: Elektromágneses síkhullám ideális szigetelőben ===
Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: <math>E(x,t) = 100 \cdot \cos(1.1t - 7.5x) \cdot e_x \frac{V}{m}</math>.
Az idő mértékegysége <math>\mu s</math>, a távolságé <math>km</math>.
 
Határozza meg a közeg dielektromos állandóját!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A térerősség általános időfüggvénye: <math>E(x,t) = E_0 \cdot \cos(\omega t - \beta x) \cdot e_x</math>.
 
Ebből látszik, hogy jelen feladatban <math>\omega = 1.1 \frac{Mrad}{s} </math> és <math>\beta = 7.5 \frac{1}{km}</math>.
Tudjuk azt is, hogy <math> v_f = \frac{c}{\sqrt \varepsilon_r} = \frac{\omega}{\beta}</math>. Átrendezve: <math>\varepsilon_r = (\frac{\beta}{\omega} \cdot c)^2 = (\frac{7.5 \cdot 10^-3}{1.1 \cdot 10^6} \cdot 3 \cdot 10^8)^2 = 4.18 </math>.
}}
 
=== 134. Feladat: Elektromágneses síkhullám szigetelő határfelületén ===
Levegőben terjedő síkhullám merőlegesen esik egy 200 <math>\Omega</math> hullámimpedanciájú ideális szigetelővel kitöltött végtelen féltér határfelületére. Mekkora a levegőben az elektromos térerősség maximális amplitúdója, ha a minimális amplitúdó levegőben 80 <math>{V \over m}</math>?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Először a reflexiós tényezőt kell kiszámítani ahol <math> Z_0=377\Omega Z_2=200\Omega </math> <math>  r={Z_2 - Z_0 \over Z_2 + Z_0}\approx 0,3 </math>.
 
A reflexiós tényezőből ki tudjuk számolni az állóhullámarányt.
 
<math> SWR= {1+|r| \over 1-|r|} \approx 1,86 </math>
(Ell.: 1 és <math>\infty</math> között van.)
SWR=<math> { |U_{max}| \over |U_{min}| } \Rightarrow |U_{max}|=|U_{min}|*SWR=80*1,86=148,8  {V \over m} </math>
}}
 
=== 135. Feladat: Elektromágneses síkhullám által gerjesztett áramsűrűség ===
Egy levegőben terjedő síkhullám merőlegesen esik egy végtelen kiterjedésű fémsík felületére. A síktól <math>\lambda \over 8</math> távolságra az elektromos térerősség komplex amplitúdója <math>500 {{V} \over {m}}</math>. Számítsa ki a felületi áramsűrűség nagyságát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A távvezeték analógiát felhasználva a lezárás rövidzár, így <math>r = -1</math>.
 
<math>E_2(h) = {E^+_2} \cdot {e^{j \beta (h-z)}} + {r} \cdot {{E^+_2} \cdot {e^{-j \beta (h-z)}}}</math>
 
<math>{\beta = {{2 \pi} \over {\lambda}}} \Rightarrow  E_2({{\lambda} \over {8}}) = {E^+_2} \cdot {e^{j {{ \pi } \over {4}}}} - {E^+_2} \cdot {e^{-j {{ \pi } \over {4}}}} = E^+_2 \cdot {\sqrt{2}j}</math>
 
<math>E^+_2 = {{500 {{V}\over{m}}} \over {\sqrt{2}j}} = -353.55i {{V} \over {m}}</math>
 
<math>|H^+_2| = {{|E^+_2|}\over{120\pi}} = 0.9378 {{A}\over{m}}</math>
 
 
 
Mivel vezetőben <math>H_{1t} = 0</math> és <math>H_{2t} - H_{1t} = K</math> azaz <math>n \times H_2 = K</math>
 
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
}}
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása ===
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.
 
Tehát:
 
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math>
 
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math>
 
//Bilicz azt mondta kell a Hx-hez egy negatív előjel
}}
 
== Poynting-vektor ==
 
 
=== 137. Feladat:  Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása===
 
Levegőben síkhullám terjed a pozitív <math>z</math> irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga <math>w = 9 \; {\mu J \over m^3}</math>.
 
Adja meg a Poynting-vektor időbeli átlagát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A Poynting-vektor időbeli átlaga felírható az energiasűrűség időbeli átlagának és a fénysebességnek a szorzataként:
 
<math>S = w \cdot c \approx
9 \cdot 10^{-6} \; {J \over m^3} \cdot 3 \cdot 10^8 \; {m \over s} =
2.7 \; {kW \over m^2}</math>
 
 
Másik megoldás, ha valaki esetleg nem ismerné a fenti magic képletet:
 
Az elektromos energiasűrűség időbeli átlaga levegőben definíció szerint felírható az alábbi módon:
 
<math>w = {1 \over 2} \varepsilon_0 E_{x0}^2 \; \longrightarrow \; E_{x0} =
\sqrt{{ 2w \over \varepsilon_0}} =
\sqrt{{ 2w \over \varepsilon_0}} =
\sqrt{{ 2 \cdot 9 \cdot 10^{-6} \over 8.85 \cdot 10^{-12}}} \approx 1426.15 \; {V \over m}</math>
\sqrt{{ 2 \cdot 9 \cdot 10^{-6} \over 8.85 \cdot 10^{-12}}} \approx 1426.15 \; {V \over m}</math>
1 364. sor: 1 862. sor:
}}
}}


=== 142. Feladat: Hertz-dipólus távoltérben ===
Levegőben álló Hertz-dipólus távolterében az elektromos térerősség amplitúdója az antennától r távolságban, az antenna tengelyétől mért <math>\vartheta </math> elevációs szög alatt <math>E(r, \vartheta)={200V \over r} \cdot sin\vartheta</math>. Adja meg az antenna által kisugárzott összes hatásos teljesítményt! <math>(D=1,5)</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Hertz-dipólus távoltérben
}}


=== 143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény ===
=== 143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény ===
1 409. sor: 1 913. sor:
<math>\vec{E}(r)=\frac{U_0}{r} \cdot \vec{e_r}</math> és <math>\vec{H}(r)=\frac{I_0}{r} \cdot \vec{e_\varphi}</math>  
<math>\vec{E}(r)=\frac{U_0}{r} \cdot \vec{e_r}</math> és <math>\vec{H}(r)=\frac{I_0}{r} \cdot \vec{e_\varphi}</math>  


(<math>\vec{e_r}, \vec{e_\varphi}</math> és <math>\vec{e_z}</math> a radiális, fi és z irányú egységvektorok)
(<math>\vec{e_r}, \vec{e_\varphi}</math> és <math>\vec{e_z}</math> a radiális, <math>\varphi</math> és <math>z</math> irányú egységvektorok)


Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara <math>r_1</math>, a külső vezető belső sugara <math>r_2</math>, a vezetők ideálisak, a kábel tengelye a z irányú.
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara <math>r_1</math>, a külső vezető belső sugara <math>r_2</math>, a vezetők ideálisak, a kábel tengelye a <math>z</math> irányú.


{{Rejtett
{{Rejtett

A lap jelenlegi, 2023. július 5., 17:27-kori változata


Itt gyűjtjük a szóbeli vizsgán húzható számolási feladatokat. Az itt lévő feladatok csak iránymutatók, időközben lehetséges, hogy változtatnak a tételsoron. Nagyon sok beugró feladat kerül ki ezek közül is, így ahhoz is kiváló gyakorlás ezeket a feladatokat végigoldani.

A feladatokban szereplő számadatok nem túl lényegesek, mivel a vizsgán is csak a számolás menetére és elméleti hátterére kíváncsiak.

Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletes megoldással is.
Hibák előfordulhatnak benne!!!
Már az is nagy segítség, ha legalább az általad húzott feladat PONTOS szövegét és SORSZÁMÁT beírod ide!

Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a Segítség:Latex és a Segítség:LaTeX példák oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az Online LATEX editor is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket. De ha még ez se megy, akkor egyszerűen nézzél meg egy már fent lévő feladatot, hogy ott hogy vannak megoldva a speciális karakterek.

Sablon:Noautonum


Elektrosztatika

1. Feladat: Két töltött fémgömb között az elektromos térerősség

Két azonos sugarú fémgömb középpontjának távolsága . A gömbök közé feszültséget kapcsolunk.

Határozza meg a középpontokat összekötő egyenes szakasz felezőpontjában az elektromos térerősséget.

Megoldás

Mivel , így a feladat megoldása során a helyettesítő töltések módszerét használjuk. Az gömböt egy , a gömböt pedig egy nagyságú ponttöltéssel helyettesítjük.

Tudjuk, hogy egy ponttöltés elektromos potenciálja, attól távolságra:

A gömb közötti feszültség felírható a két gömb potenciálkülönbségeként. A fenti képletet felhasználva:



Ebből kifejezhető a gömbök töltésének nagysága:

Tudjuk, hogy egy ponttöltés elektromos térerőssége sugárirányú és attól távolságra a nagysága:

A gömbök középpontját összekötő egyenes felezőpontjában az elektromos térerősség felírható a két gömb elektromos terének szuperpozíciójaként. Mivel a térerősségvektorok egy egyenesbe esnek, és mindkét térerősségvektor a negatív töltésű gömb felé mutat, így szuperpozíció egy algebrai összegé egyszerűsödik. A fenti képletet felhasználva:

Behelyettesítve a töltésre kiszámolt képletet:

3. Feladat: Elektromos térerősség egyenletesen töltött henger belsejében

Levegőben álló, átmérőjű henger, egyenletes térfogati töltéssűrűséggel töltött. .

Adja meg az elektromos térerősség nagyságát a henger belsejében, a tengelytől távolságban!

Megoldás

Írjuk fel a Gauss-tételt egy olyan zárt sugarú, hosszúságú, térfogatú és felületű hengerre, melynek tengelye egybeesik a töltött henger tengelyével:



Szimmetria okokból az elektromos térerősségvektorok minden pontban sugárirányúak. Ezáltal a térerősségvektorok a palást felületén mindenhol párhuzamosak a felület normálisával, míg a henger alaplapjain merőlegesek a felület normálisára, tehát a felületintegrál egy egyszerű szorzássá egyszerűsödik a paláston, míg az alaplapokon pedig konstans nulla értékű.


11. Feladat: Ismert potenciálú és töltésű fémgömb sugarának meghatározása

Egy levegőben álló, töltött fémgömb felszínén a felületi töltéssűrűség . A gömb potenciálja a végtelen távoli ponthoz képest . Mekkora a gömb sugara?

Megoldás

Első körben határozzuk meg a fémgömb elektrosztatikus terének térerősségvektorát.

Ehhez írjuk fel a Gauss-tételt egy olyan sugarú gömbfelületre, melynek középpontja egybeesik a fémgömb középpontjával.



Felhasználva, hogy levegőben az elektromos térerősségvektor és az elektromos eltolásvektor kapcsolata:


Szimmetria okok miatt, az elektromos térerősségvektorok sugárirányúak lesznek és mivel a gömb pozitív töltésű, így a gömbtől elfelé mutatnak. Emiatt a felületintegrál egy egyszerű szorzássá egyszerűsödik. A térfogati töltéssűrűség integrálja az adott térfogatban lévő összetöltés. Mivel a fémgömb sugaránál minden esetben nagyobb sugarú gömb térfogatára integrálunk, így ez az érték konstans lesz és megegyezik a felületi töltéssűrűségnek fémgömb felületé vett integráljával. A felületi töltéssűrűség a fémgömb felületén állandó, így ez az integrál is egy egyszerű szorzássá egyszerűsödik. Tehát:


Most írjuk fel a fémgömb potenciáljára a definíciós képletet, feltéve hogy a gömbtől végtelen távoli pont potenciálja nulla:




Természetesen a feladat ennél sokkal egyszerűbben is megoldható, ha tudjuk fejből a ponttöltés potenciálterének képletét. Ugyanis, ha használjuk a helyettesítő töltések módszerét és a gömb összes töltését egy ponttöltésbe sűrítjük a gömb középpontjába, akkor a gömb felületén a potenciál nem változik. Tehát:



19. Feladat: Gömbkondenzátor elektródáira kapcsolható maximális feszültség

Egy gömbkondenzátor belső elektródájának sugara , külső elektródájának sugara , a dielektrikum relatív dielektromos állandója .

Legfeljebb mekkora feszültséget kapcsolhatunk a kondenzátorra, ha a térerősség a dielektrikumban nem haladhatja meg az értéket.

Megoldás

Legyen a belső, sugarú gömb töltése .

A Gauss törvény alkalmazásával könnyen meghatározhatjuk a gömbkondenzátor két elektródája közötti elektromos tér nagyságát, a középponttól mért távolság függvényében:


A fenti összefüggésből is látszik, hogy a dielektrikumban a legnagyobb térerősség a belső gömb felületén lesz, így ebből kifejezhető a töltés nagysága:


A két elektróda közötti potenciálkülönbség:


A fenti összefüggéseket felhasználva meghatározható a két elektródára kapcsolható maximális feszültség:

22. Feladat: Elektródarendszer energiaváltozása széthúzás hatására

Levegőben egymástól távolságban helyezkedik el két kis sugarú elszigetelt fémgömb, melyek között az erő nagyságú erő hat.

Mekkora az elektromos mező energiájának megváltozása, miközben a gömbök távolságát -re növeljük?

Megoldás

Mivel , így a feladat megoldása során a helyettesítő töltések módszerét használjuk. Az gömböt egy , a gömböt pedig egy nagyságú ponttöltéssel helyettesítjük. A töltések előjelét már maga a változó magába foglalja.

A két ponttöltés között ható erő nagysága egyszerűen kifejezhető, melyet átrendezve megkaphatjuk a két töltés szorzatának nagyságát:

Tudjuk, hogy egy ponttöltés elektromos potenciálja, attól távolságra:

Ezt felhasználva fejezzük ki az és gömbök potenciáljait:


Tudjuk, hogy egy levegőben elhelyezkedő elszigetelt elektródarendszer összenergiája:

Ezt felhasználva kifejezhető az elektromos mező energiájának megváltozása, miközben a két gömb távolgását -ről -re növeljük:






Most behelyettesítjük a megadott adatokat és az imént kiszámolt szorzat értékét:


Megjegyzés: Jelen esetben a képletbe pozitív számként helyettesítettük be az F erő nagyságát. Ezzel azt feltételeztük, hogy szorzat pozitív értékű, azaz a két gömb töltése azonos előjelű, tehát köztük taszítóerő lép fel. A kapott negatív eredmény ennek meg is felel, hiszen ha két gömb taszítja egymást és mi megnöveljük a köztük lévő távolságot, akkor energiát adnak le, miközben munkát végeznek a környezetükön.
Ha azonban F helyére negatívan helyettesítenénk be az 5N értékét, akkor azt feltételezném, hogy a gömbök vonzzák egymást. Ekkor pozitív eredményt kapnánk, ami szintén megfelel a várakozásoknak, hiszen két egymást vonzó gömb közötti távolságot csakis úgy tudom megnövelni, ha rajtuk munkát végzek és ezáltal megnövelem az energiájukat.

24. Feladat: Elektródarendszer energiája

Két elektródából és földből álló elektródarendszer föld- és főkapacitásai: . Az elektródák potenciálja a föld potenciálját válasszuk nullának: .

Mekkora az elektródarendszerben tárolt elektrosztatikus energia?

Megoldás

Az elektródarendszerben tárolt teljes elektrosztatikus energia a föld- és főkapacitásokban tárolt összenergiával egyezik meg. Egy kondenzátor elektrosztatikus energiája:


Ezt felhasználva a három kapacitásban tárolt összenergia:

26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása

Egy levegőben álló, zérus össztöltésű fém gömbhéj belső sugara , külső sugara . A gömbhéj középpontjában ponttöltés van.

Adja meg a gömbhéj külső és belső felszínén felhalmozódó felületi töltéssűrűségek hányadosát!

Megoldás


Mivel a fém gömbhéj földeletlen és össztöltése zérus, így a töltésmegosztás következtében a fenti töltéselrendeződés alakul ki.

Azaz a fémgömbhéj belső felszíne , a külső felszíne pedig töltésű lesz, egyenletes töltéseloszlással.

A külső és belső felszínen felhalmozódó felületi töltéssűrűségek hányadosa tehát:

27. Feladat: R sugarú egyenletesen töltött gömb D tere

Egy R sugarú gömb egyenletes térfogati töltéssűrűséggel töltött.

Adja meg az elektromos eltolás nagyságát a középpontól 2R távolságban.

Megoldás

Írjuk fel a Gauss-törvényt egy zárt, sugarú, felületű gömbre, melynek középpontja egybeesik a töltött gömb középpontjával:

Szimmetria okokból az elektromos eltolásvektorok a gömb felületének minden pontjában sugárirányúak, azaz párhuzamosak a felület normálisával, tehát a felületintegrál szorzássá egyszerűsödik.

28. Feladat: Gömb kapacitása a végtelenhez képest

Levegőben áll egy sugarú fémgömb, amelyet egyenletes vastagságú relatív dielektromos állandójú szigetelő réteg borít.

Adja meg a gömb kapacitását a végtelen távoli térre vonatkoztatva!

Megoldás

Legyen csak a fémgömb és a teljes golyó sugara, valamint .


Ekkor az elektromos térerősség:


Az elektromos potenciál:

/*Szerintem rosszak az integrálási határok, fel vannak cserélve és így negatív eredményt kapunk.*/

Felhasználva a formulát:


/* Nem viselkedik valami jól az utolsó képletben.*/

/*Kókányoltam rajta egy kicsit, de még mindig rossz*/

Stacionárius áramlási tér

34. Feladat: Áramsűrűség meghatározása egy felület másik oldalán

Adott sík. A vezetőképesség: esetén és esetén . Adott áramsűrűség a sík egyik oldalán.

Határozza meg az áramsűrűség függvényt a felület másik oldalán!

Megoldás

Tudjuk, hogy

Továbbá és (!!! ez itt felületi töltéssűrűség, ami a példában 0), tehát

Ezekből következik, hogy:

Azaz:

36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása

Adott egy pontszerű áramerősségű pontszerű áramforrás egy fajlagos vezetőképességű közegben.
Határozza meg a teljesítménysűrűséget a forrástól távolságban.

Megoldás

A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.

Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.
Felírva a Gauss-törvényt egy térfogatú felületű gömbre, melynek középpontja a ponttöltés:

Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:

Most felhasználva a betűcserés analógiát, megkapható a pontszerű áramforrás áramsűrűségvektora:

Az áramsűrűség segítségével pedig pedig felírható a teljesítménysűrűség a távolság függvényében:

Innét pedig a teljesítménysűrűség a pontforrástól R távolságra:


38. Feladat: Koaxiális kábel szivárgási ellenállásából fajlagos vezetőképesség számítása

Egy koaxiális kábel erének a sugara , köpenyének belső sugara .

Mekkora a szigetelőanyag fajlagos vezetőképessége, ha a kábel hosszú szakaszának szivárgási ellenállása ?

Megoldás

Először is vegyük fel a koaxiális kábel elektrosztatikai modelljét (hengerkondenzátor) és számoljuk ki a hosszegységre eső kapacitását. Ezt úgy tehetjük meg, hogy előbb kiszámoljuk a potenciálkülönséget az ér és a köpeny között, majd kifejezzük a kapacitást:

Ebből a hosszegységre eső kapacitás:

Értelmezés sikertelen (ismeretlen „\buildrel” függvény): {\displaystyle C \buildrel \Delta \over = {Q \over U} = {{ql} \over U} \to C' = {C \over l} = {{{{ql} \over U}} \over l} = {q \over U} = { U {2 \pi \varepsilon \over ln{r_2 \over r_1}}} \cdot {1 \over U } = {{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}} }

(Persze aki tudja fejből a koaxiális kábel hosszegységre eső kapacitását, az kezdheti kapásból innét is a feladatot)

Majd használjuk az elektrosztatika illetve az áramlási tér közötti betűcserés analógiákat:

Amit áthelyettesítve megkapjuk a hosszegységre eső konduktanciát:

Most kifejezzük a hosszegységre eső konduktanciát a szivárgási ellenállásból és a vezeték hosszából. Ha ez megvan akkor csak át kell rendezni a fajlagos vezetőképességre az egyenletet:


42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása

Stacionárius áramlási térben az áramsűrűség . Mekkora a z-tengellyel 60°-os szöget bezáró felületen átfolyó áram?

Megoldás

A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát:

Esetünkben a J áramsűrűség-vektor z irányú, így nekünk a felületre normális komponensével kell számolnunk:

Stacionárius mágneses tér

48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek

Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).

A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget! (ábra a megoldásnál)

Megoldás

50. Feladat: Két áramjárta vezető közötti erőhatás

Két egymással párhuzamos végtelen hosszú vezető egymástól távolságban helyezkedik el. Az egyiken , a másikon folyik.

Mekkora erő hat az egyik vezeték -es szakaszára?

Megoldás

Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.

A mágneses térerősséget egy olyan L körvonalon integráljuk, ami által kifeszített A felület középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.


Tudjuk még, hogy vákuumban.


A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:

, ahol a konstans áramerősség, pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.


Innen a megoldás:

Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, akkor taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:


52. Feladat: Két toroid tekercs kölcsönös indukciója

Egy toroidra két tekercs van csévélve, az egyik menetszáma , a másiké . A toroid közepes sugara , keresztmetszetének felülete , relatív permeabilitása .
Határozza meg a két tekercs kölcsönös induktivitását!

Megoldás

A kölcsönös induktivitás definíció szerint egyenlő az első tekercsnek a másodikra vonatkoztatott induktivitásával, valamint a második tekercsnek az első tekercse vonatkoztatott induktivitásával. Tehát elég csak az utóbbit meghatároznunk.

A második tekercsnek az elsőre vonatkoztatott kölcsönös induktivitása definíció szerint, a második tekercs árama által az első tekercsben indukált fluxus és a második tekercs áramának hányadosa feltéve, hogy az első tekercs árama zérus:

Szimmetria okokból a második tekercs árama által az első tekercsben indukált teljes fluxus egyenlő az első tekercs egyetlen menetében indukált fluxus N1-szeresével.

Az első tekercs egyetlen menetében, a második tekercs árama által indukált fluxust megkapjuk, ha a második tekercs árama által keltett mágneses mező indukcióvektorát integráljuk az első tekercs keresztmetszetén:

A mágneses indukcióvektor párhuzamos a toroid keresztmetszetének normálisával, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:

A mágneses indukció definíció szerint kifejezhető a mágneses térerősséggel:

A második tekercs árama által indukált mágneses térerősség az Ampere-féle gerjesztési törvénnyel megadható. Ha a toroid közepes sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített körlapon összesen N2-ször döfi át egy-egy I2 áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:


Ezt felhasználva a két egymásra csévélt toroid tekercs kölcsönös induktivitása:


Csak a poén kedvéért ellenőrizzük a kapott eredményt dimenzióra is:


53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon

Toroid alakú vasmagon egy és egy menetes tekercs helyezkedik el. Az menetszámú tekercs öninduktivitása . Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!

Megoldás


57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása

A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!
Ha esetleg valaki kihúzná az "igazi" 57. feladatot, akkor írja be ennek a helyére, ezt pedig tegye a lap aljára ? feladatként. Köszi!

Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora:
Adja meg a komplex mágneses térerősségvektort!

Megoldás

A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!

Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így , valamint és

Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:

Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak ):


A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:

58. Feladat: Toroid tekercs fluxusa és energiája

Hányszorosára változik egy önindukciós együtthatóval rendelkező árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan -re növeljük?

Hányszorosára változik a tekercs mágneses mezejében tárolt energia?

Megoldás

Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.

Egy bármilyen tekercs fluxusa az képletből számolható. Ez alapján a toroid fluxusváltozása:

Egy bármilyen tekercs energiája számolható a képlet alapján. Tehát a toroid energiaváltozása:

59. Feladat: Kölcsönös indukciós együttható meghatározása a Biot-Savart törvény segítségével

Egy szabályos kör alakú sugarú körvezetővel egy síkban, a körvezető középpontjában helyezkedik el egy oldalhosszúságú négyzet alakú vezető keret. Határozza meg a két vezető keret kölcsönös indukciós együtthatóját a Biot-Savart törvény segítségével, ha  !

Megoldás

A kölcsönös indukciós együttható azt mutatja meg, hogy mekkora fluxust hoz létre egy vezető hurok árama egy másik vezető hurokban.

Legyen a külső kör alakú vezetőben folyó áram ! Mivel , ezért azt kell meghatározni, hogy ez az áram mekkora mágneses térerősséget hoz létre a körvezető középpontjában, ahol a négyzetes vezető elhelyezkedik. Ezt a Biot-Savart törvénnyel meg lehet határozni, így megkapjuk kölcsönös indukciós együttható értékét.

A Biot-Savart törvény : , ahol az elemi szakaszból a vizsgált pontba mutató egységvektor (fontos, hogy EGYSÉG-vektor, mert ha nem az egységvektorral számolunk, akkor a nevezőben nem négyzetes, hanem köbös a távolság). Mivel a vizsgált pont a körvezető középpontja, így a távolság végig és a körintegrálás a körvezető keret kerületével való szorzássá egyszerűsödik:

Mivel ezért volt elég a középpontban kiszámolni a térerősséget és a kis négyzetes vezető fluxusát így közelíteni:

Végül mindent behelyettesítve:


???. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény

A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls! Eddig ez az 59.-es volt, de biztos nem ez a valódi sorszáma, 59. fentebb.

Adott egy kondenzátor, melynek fegyverzetei között egy fajlagos vezetőképességű dielektrikum helyezkedik el. A kondenzátor felületű fegyverzetei egymástól távolságra helyezkednek el. Határozza meg a dielektrikumban disszipált teljesítményt, ha a kondenzátor fegyverzeteire feszültséget kapcsolunk.

Megoldás

A dielektrikum konduktanciájának meghatározására alkalmazható stacionárius áramlási tér - elektrosztatika betűcserés analógia, mivel a két jelenséget ugyanolyan alakú differenciálegyenletek és azonos peremfeltételek írják le. Így elég csak a síkkondenzátor kapacitásának képletét ismernünk:


A dielektrikumban disszipált teljesítmény innét már könnyen számolható az ismert képlet alapján:


61. Feladat: Toroid tekercs mágneses indukciója

Adott egy kör keresztmetszetű toroid alakú, relatív permeabilitású, menetes tekercs, melynek átlagos erővonal hossza .
A tekercselésben nagyságú áram folyik.

Adja meg a mágneses indukció nagyságát a toroid belsejében! Miért ad jó értéket a közelítő számításunk?

Megoldás

Az Ampere-féle gerjesztési törvényből következik, hogyha a toroid közepes sugarához sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor. Ez onnét látható, hogy ha veszünk a toroid tekercseléséből egyetlen menetet, akkor arra igaz, hogy a menet minden kis szakaszában folyó áram által keltett mágneses mező a jobbkéz-szabály (I - r - B) szerint a menet síkjára merőleges irányú mágneses térerősségvektort hoz létre.

Tehát a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített A területű körlapot összesen N-ször döfi át egy-egy I áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:

Ha az átlagos erővonalhossz, vagyis a toroid közepes kerülete jóval nagyobb mint a toroid közepes sugara és a toroid külső és belső sugarának különbsége jóval kisebb mint a közepes sugár, akkor az erővonalak jó közelítéssel homogén sűrűségűek és szabályos koncentrikus köröket alkotnak. Ha ezek a feltételek teljesülnek, akkor fenti eredmény jó közelítéssel megadja a toroid teljes belsejében a mágneses indukció nagyságát:


62. Feladat: Szolenoid tekercs mágneses indukciója

Adott: , , , .

Adja meg a mágneses indukció nagyságát a Szolenoid belsejében!

64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia

Hosszú, sugarú alumínium vezetőben áram folyik.

Határozza meg a vezető környezetében a mágneses teret! Mennyi mágneses energia raktározódik a vezető egység hosszú szakaszában?

Megoldás

Az Ampere-féle gerjesztési törvényt írjuk fel egy olyan zárt r sugarú, L körvonalra, amely által kifeszített A körlap merőleges a vezetékre és a vezeték tengelye pont a közepén döfi át.

Szimmetria okokból a mágneses térerősségvektorok az L görbe minden pontjában érintő irányúak lesznek, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik minden esetben. Az egyenlet jobb oldala miatt viszont két esetre kell bontanunk a vizsgálódást:


1. Eset: Ha a vezetéken kívül vagyunk , akkor az áramsűrűség felületintegrálja a vezeték teljes áramával egyenlő.


2. Eset: Ha a vezetéken belül vagyunk , akkor a teljes áramnak csak a felületarányos része lesz az áramsűrűség integráljának eredménye.


A vezeték egységnyi hosszában tárolt mágneses energia meghatározására az ismert összefüggés:

Mivel homogén közegben , azaz a vektorok egy irányba mutatnak minden pontban, így a skaláris szorzatuk megegyezik a vektorok nagyságának szorzatával. Azonban a mágneses térerősségvektor nagysága függ a sugártól, ezért célszerűen áttérünk hengerkoordináta-rendszerbe és ott végezzük el az integrálást (egy r szorzó bejön a Jacobi-determináns miatt):


65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség

Egy sugarú vékony falú rézcső belsejében, a tengelytől távolságra, azzal párhuzamosan egy vékony rézvezeték helyezkedik el. Mindkét vezető elég hosszú és nagyságú egyenáram folyik bennük, de ellenkező irányban. Mekkora az eredő mágneses térerősség nagysága a tengelyben?

Megoldás

A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.

Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített A síkon csakis a vékony rézvezeték árama megy át.


Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:

66. Feladat: Végtelen, egyenes vezető, és vezetőkeret kölcsönös induktivitása.

Egy a = 0.05m oldalhosszúságú négyzet hossztengelyétől d = 0.12m távolságban (tehát két oldalával párhuzamosan, kettőre pedig merőlegesen, a vezetőkeret fölött), egy végtelen hosszúságú, áramot szállító vezeték halad. Határozza meg az egyenes vezető és a vezetőkeret közötti kölcsönös indukció együtthatót!

Megoldás

A vezetőkeret két oldala, amelyek a végtelen hosszú vezetővel párhuzamosak, azonos távol vannak a vezetőkerettől. Mivel a mágneses indukció körkörösen, a jobbkéz-szabály szerint fogja körül a vezetőt, ezért a két átellenes oldalban pont ellenkező előjelű feszültség indukálódik, így kinullázzák egymást. Tehát 0 lesz a kölcsönös indukció.

Kijön számítás alapján is.

Távvezetékek (TV)

68. Feladat: Mindkét végén nyitott ideális távvezeték rezonancia frekvenciája

Melyik az a legkisebb frekvencia, amelyen rezonancia léphet fel egy mindkét végén nyitott, hosszúságú, ideális légszigetelésű távvezetéken?

Megoldás

Rezonancia akkor lép fel egy ideális távvezetéken, ha a távvezeték bemeneti impedanciájával megegyező nagyságú és fázisú impedanciával zárjuk le a távvezeték elejét.

Az ideális távvezeték bemeneti impedanciája könnyen számítható az ismert képlet alapján, ha a távvezeték lezárása szakadás:




Mivel a távvezeték elejének lezárása is szakadás, így annak az impedanciája is végtelen, tehát a rezonancia kialakulásához a bemeneti impedanciának is végtelennek kell lennie. Ez akkor állhat elő, ha a bemeneti impedancia kifejezésének nevezője nulla:


azért csak pozitív egész szám lehet (képletszerűleg bármilyen egész szám jó lenne), mert ugye negatív frekvenciájú hullám nem létezik, valamint kérdéses, hogy a 0 frekvenciájú hullámot vagyis az egyengerjesztést elfogadjuk-e. Ha igen akkor ez a legkisebb frekvencia, ami teljesíti a feltételeket, ha nem akkor számolunk tovább:






A feladat más megközelítéssel is megoldható, bár szerintem az előbbi megoldás az egzaktabb, míg a második egy kicsit "fapadosabb", de kellően szép köntösben tálalva ez is tökéletes megoldás.

Emlékezzünk vissza, mit tanultunk a hullámjelenségekről: Rezonancia esetén olyan állóhullám alakul ki melyre igaz, hogy a szabad végeken (szakadás) maximumhelye, míg a rögzített végeken (rövidzár) csomópontja van.

Keressük meg azt a legnagyobb hullámhosszt (azaz legkisebb frekvenciát), ami kielégíti ezen feltételeket. Segítségül egy kis ábra amin vázolva van az első pár lehetséges eset:

Erről nagyon szépen látszik, hogy a legnagyobb kialakulható hullámhossz a távvezeték hosszának kétszerese lehet. Tehát:

70. Feladat: Szakadással lezárt TV áram amplitúdó nagysága

Egy ideális légszigetelésű TV ismert hullámimpedanciája 500 Ohm. A távvezeték végén a szakadáson mért feszültség amplitúdója . Mekkora a távvezeték végétől méterre az áramerősség amplitúdója, ha tudjuk, hogy a frekvencia 1 MHz.

Megoldás

A megoldás menete: Ideális a TV és légszigetelésű ezért a és mivel légszigetelésű a vezeték .

Felírjuk a Heimholtz egyenleteket a TV végére:

A reflexiós tényező a távvezeték végén:

Ebből kifejezve

Ezt visszaírva a Heimholtz megoldásába:

Ebből ki tudjuk fejezni Értelmezés sikertelen (formai hiba): {\displaystyle U^{+}-t \;\; és \;\; U^{-}-t } Amit visszaírva az egyenletbe a további paramétereket megkapjuk az áram amplitúdóját.

72. Feladat: Lecher vezeték hullámimpedanciájának számítása

Egy ideális Lecher vezeték hullámimpedanciája kezdetben 400 ohm. Eltávolítjuk egymástól a vezetékpárt, ekkor a vezeték hosszegységre jutó soros impedanciája 1,5-szeresére nő. Mennyi lesz ekkor a vezeték hullámimpedanciája?

Megoldás

A megoldás menete: Mivel ideális a TV, a fázissebesség c, azaz a fénysebesség. Tudjuk, hogy .

A hullámimpedancia pedig . Rendezgetéssel ezzel a két képlettel kijön.

73. Feladat: Ideális TV lezárásának számítása

Egy ideális távvezetek hullámimpedanciája . Az állóhullámarány , a TV lezárása egy R rezisztancia. R milyen értékeket vehet fel? Ha a lezárást kicseréljük egy C kondenzátorra, milyen értékűnek válasszuk, hogy az állóhullámarány megmaradjon? (

Megoldás

Az állóhullámarány és a reflexiós tényező kapcsolata:

Ebből , tehát


Tudjuk, hogy , kifejezve R-t, adódik, hogy: .

ha , akkor .

ha , akkor .


Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le: ez egy kedves becsapós kérdés, mert amennyiben , akkor .

Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az -et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor.

78. Feladat: Ideális távvezeték állóhullámarányának számítása

Egy ideális távvezeték mentén a feszültség komplex amplitúdója az függvény szerint változik. Adja meg az állóhullámarányt!

Megoldás

A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad ) és a reflektált (negatív irányba halad ) komponenseinek komplex amplitúdói:

Megjegyzés: A feladat megadható úgy is, hogy függvényt adják meg. Ekkor a beeső komponenshez () tartozik a pozitív, a reflektálthoz () pedig a negatív hatványkitevő!


Kapcsolat a két fajta paraméterezés között:


Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti paraméterezéssel, majd ebből szerinti paraméterezéssel:


Ebből pedig már számolható a távvezeték állóhullámaránya:

81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása

Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: és . Egy egyenfeszültségű feszültségforrást kapcsolunk rá.

Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség lesz!

Megoldás

Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:


Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz , ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát . Az egyenfeszültségből következik, hogy a kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.

Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):


Ebből látszik, hogy a kialakuló hullámforma egy -tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.

A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (), feltéve hogy , hiszen egyenfeszültséggel gerjesztjük a távvezetéket:


Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:


82. Feladat: Ideális távvezeték bemeneti impedanciája

Egy ideális, légszigetelésű hosszúságú, hullámimpedanciájú távvezeték vezetett hullámhossza

Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy induktivitású ideális tekercs?

Megoldás

Tudjuk, hogy:


A lezáró tekercs impedanciája:


Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:



A kapott eredményen nem kell meglepődni. Jelen paraméterek mellett a távvezeték bemeneti impedanciája végtelenül nagy.

83. Feladat: Ideális távvezeték meddő teljesítménye

Egy ideális, légszigetelésű hosszúságú, hullámimpedanciájú távvezeték vezetett hullámhossza . A távvezeték bemenetére egy amplitúdójú, körfrekvenciájú feszültséggenerátort kapcsolunk, miközben szakadással zárjuk le a másik oldalt.

Mekkora a távvezeték által felvett meddő teljesítmény?

Megoldás

A távvezeték helyettesíthető egyetlen nagyságú impedanciával figyelembe véve azt, hogy a lezáró impedancia a szakadás miatt végtelen nagyságú.


Ezzel a helyettesítéssel már egyszerűen számolható a kapcsolás komplex látszólagos teljesítménye:


A távvezeték által felvett meddő teljesítmény a komplex látszólagos teljesítményének imaginárius részével egyezik meg:

85. Feladat: Távvezeték állóhullámaránya

Egy távvezeték hullámimpedanciája , a vezeték végén a feszültség és az áram amplitúdója 1kV és 2A. Mit mondhatunk a reflexiós tényezőről? Mekkora a távvezetéken az állóhullámarány lehető legkisebb értéke?

Megoldás

. Ez csak az abszolút értéke az impedanciának (amplitúdók voltak csak adottak a fázisok nem). Ebből felírva a két szélső helyzetet( vagy ):

Adódik, hogy a reflexiós tényező abszolútértéke 1 és 0 között változik. Ebből pedig behelyettesítve az állóhullámarány képletébe látszik hogy az végtelen és egy között változik. Így annak lehető legkisebb értéke 1.

86. Feladat: Számolás az ideális TV lánckarakterisztikájának I. egyenletével

Adott egy ideális távvezeték, melynek hullámimpedanciája , hossza pedig . A távvezeték végén adott az áram és a feszültség komplex amplitúdója: illetve .
Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején!

Megoldás

Tudjuk, hogy:


Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:


87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével

Adott egy ideális távvezeték, melynek hullámimpedanciája , hossza pedig . A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója .
Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!

Megoldás

Tudjuk, hogy:


Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:


88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye

Egy ideális távvezeték hullámimpedanciája , lezárása pedig egy reaktanciájú kondenzátor. A távvezeték fázisegyütthatója .

Adja meg a bemeneti impedanciát a lezárástól való távolság függvényében. Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.

Megoldás

A bemeneti impedancia a hely függvényében egyszerűen megadható, ha az ideális távvezeték bemeneti impedanciájának általános képletében az hossz helyébe általánosan változót írunk, ahol a lezárástól való távolságot jelöli.

Megjegyzés: Arra az esetre, ha mégis rákérdeznének, hogy ez mégis honnan jött, célszerű lehet átnézni a jegyzetből az ideális távvezeték lánckarakterisztikájának levezetését, csak l helyébe x-et kell írni és ugyanazzal a gondolatmenettel levezethető ez a képlet.


A bemeneti impedancia csakis akkor lehet 0, ha a fenti képletben a számláló is szintén 0.





Indukálási jelenségek

94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke

Egy ellenállású zárt vezetőkeret fluxusa , ahol . Mekkora a keretben folyó áram effektív értéke?

Megoldás

Az indukálási törvény alapján:


Innen a feszültség effektív értéke:


Az áram effektív értéke pedig:


95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye

Adott egy ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: .

Adja meg a a gyűrűben indukált áram időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.

Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.

Megoldás

Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel:

Ebből az áram időfüggvénye:

Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.

Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.

Az indukált áram időfüggvénye tehát:


98. Feladat: Zárt vezetőhurokban indukált feszültség

Az xy síkon helyezkedik el egy sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense idő alatt értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?

Megoldás

Az indukálási törvény alapján:


99. Feladat: Zárt vezetőhurokban disszipálódó összes energia

R ellenállású zárt vezetőkeret fluxusa intervallumban ismert szerint változik. Fejezze ki az intervallumban a keretben disszipálódó összes energiát!

Megoldás

Az indukálási törvény alapján:

Továbbá:

Ezt integrálni kell 0-tól T-ig, 1/T előtaggal.

(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)

(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó)

100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség

Egy hosszú egyenes vezetőtől távolságban egy sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.

Mekkora az indukált feszültség, ha a vezetőben folyó áram sebességgel változik.

Megoldás

Az indukálási törvény alapján:

A hosszú egyenes áramjárta vezető környezetében a mágneses térerősségvektor az Ampere-féle gerjesztési törvénnyel meghatározható. Ha a mágneses térerősséget egy sugarú zárt kör mentén integrálunk, amely által kifeszített területű körlapot a közepén merőlegesen döfi át a vezeték, akkor a vonalintegrál egy egyszerű szorzássá egyszerűsödik:


Ezt behelyettesítve az indukált feszültség képletébe:


Megjegyzés: Természetesen ez csak egy jó közelítés, hiszen a vezető keret mentén nem állandó nagyságú a mágneses térerősség változása, mivel az függ a vezetőtől való távolságtól is. Azonban a közepes távolságot véve, csak kismértékű hibát vétünk.


101. Feladat: Zárt vezetőhurokban indukált feszültség

Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: .

Mekkora lesz az indukált feszültség nagysága amikor ?

Megoldás

Az indukálási törvény alapján:


Behelyettesítve a értéket:


Elektromágneses síkhullám jó vezetőben

105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa

Egy sugarú hengeres vezető anyagban a behatolási mélység . A henger felszínén az elektromos térerősség amplitúdója , kezdőfázisa pedig .

A felszíntől távolságban térerősség amplitúdója . Mennyi ilyenkor a fázisa a térerősségnek?

Megoldás

Tudjuk, hogy a hogy vezető anyagokban az elektromos térerősség komplex amplitúdója a mélység (z) függvényében:


Ebből a képletből kifejezhető az elektromos térerősség komplex amplitúdójának nagysága (abszolút értéke):

Behelyettesítve a megadott adatokat:

Most fejezzük ki a fentebbi képletből az elektromos térerősség komplex amplitúdójának fázisát:

Behelyettesítve a megadott adatokat, majd az imént kiszámolt arányt:


106. Feladat: Koaxiális kábel váltóáramú ellenállása

Egy koaxiális kábel magjának sugara , a köpenyének belső sugara , a külső sugara pedig . A mag és a köpeny vezetőképessége egyaránt . A behatolási mélység a kábelre kapcsolt generátor frekvenciáján .

Adja meg az elrendezés hosszegységre eső váltóáramú ellenállását.

Megoldás

A koaxiális kábel erővonalképe:

Az elektromos térerősség mind a magban, mind pedig a köpenyben függvény szerint csökken.

Mivel a behatolási mélység nagyságrenddel kisebb, mint a kábel méretei, így ellenállás szempontjából olyan, mintha csak egy-egy vastagságú keresztmetszeten folyna egyenáram mind a magban, mind pedig a köpenyben. Az eredő váltóáramú ellenállás pedig ezen két egyenáramú ellenállás összege:


Ebből a hosszegységre eső váltóáramú ellenállás:

107. Feladat: Hengeres vezetőben disszipált hőteljesítmény

Egy keresztmetszetű, hosszú hengeres vezetőben amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység , a fajlagos vezetőképesség pedig . Mennyi a vezetőben disszipált hőteljesítmény?

Megoldás

A vezető sugara:

Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima hosszúságú, keresztmetszetű és fajlagos vezetőképességű vezetékdarabnak.

A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):


109. Feladat: Hengeres vezető belsejében az elektromos térerősség

Egy sugarú, hosszú hengeres vezető fajlagos vezetőképességű anyagból van, a behatolási mélység . A térerősség időfüggvénye a vezető felszínén . Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos. Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!

Megoldás

Mivel:


Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:


A differenciális Ohm-törvény:


Ezeket egybefésülve és áttérve időtartományba:


Behelyettesítés után, mélységben:


111. Feladat: Behatolási mélység

Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!

Megoldás

terjedési együttható

- csillapítási tényező

- fázistényező

behatolási mélység


Vezető anyagokban , mivel:

, azonban vezető anyagokban , így a terjedési együttható:


Ebből számításának módja:

(de most nem ezt kell használni)


A térerősség amplitúdójának nagysága a vezetőben:


112. Feladat: Vezető közeg hullámimpedanciája

Egy relatív permeabilitású vezetőben körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami .

Mi a hullámimpedancia abszolút értéke?

Megoldás

Tudjuk, hogy a terjedési együttható:


Mivel a közeg jó vezető és relatíve alacsony körfrekvenciájú a síkhullám, így:


A terjedési együttható, így egyszerűsíthető:


Mivel ismerjük a terjedési együttható abszolút értékét, ebből a képletből kifejezhető a közeg fajlagos vezetőképessége:


A hullámimpedancia képlete szintén egyszerűsíthető, figyelembe véve, hogy vezető közeg esetén:

114. Feladat: Teljesítményváltozás

Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!


116. Disszipált teljesítmény alumíniumvezetőben

Egy hengeres sugarú és hosszúságú alumínium vezetőben amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység , határozza meg a vezető által disszipált teljesítményt, ha !

Megoldás
Mivel a vizsgáztatóm azt mondta a megoldásomra, hogy rossz. de közben áttértünk a tételre, nem írnék le rossz megoldást.

Elektromágneses hullám szigetelőben

119. Feladat: Közeg hullámimpedanciájának számítása

Egy adott relatív permeabilitású közegben síkhullám terjed körfrekvenciával. A terjedési együttható értéke:
Adja meg a közeg hullámellenállásának értékét!

Megoldás

A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.



Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a második képletet négyzetre emelve, majd rendezve kapjuk:

Ezt behelyettesítve az első egyenlet nevezőjébe:

A gyökvonás elvégzése után az eredményt megadó formula:


Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy

120. Feladat: Felületen átáramló hatásos teljesítmény számítása

Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!

Megoldás
A megoldás ismeretlen.


125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye

Egy levegőben terjedő síkhullám merőlegesen esik egy hullámimpedanciájú, ideális szigetelő közeg határfelületére.
A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója .

Adja meg a határfelület nagyságú felületén átáramló hatásos teljesítmény!

Megoldás

Tudjuk, hogy egy elektromágneses hullám által adott felületen disszipált hatásos teljesítmény:

Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:


A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos mind a mágneses térerősség amplitúdója.

Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol és a határfelületen vett amplitúdók nagysága:



Felhasználva, hogy a szigetelőben , majd rendezve az egyenletet:


126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása

Egy levegőben terjedő síkhullám merőlegesen esik egy hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy nagyságú felületén disszipálódó hatásos teljesítmény . Mekkora az elektromos térerősség amplitúdója a szigetelőben?

Megoldás

Tudjuk, hogy egy elektromágneses hullám által adott felületen disszipált hatásos teljesítmény:


Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:


A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos, mind a mágneses térerősség amplitúdója.

Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol és a határfelületen vett amplitúdók nagysága:

Felhasználva, hogy a szigetelőben , majd rendezve az egyenletet:


129. Feladat: Elektromágneses síkhullám közeghatáron

relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.
A határfelületen az elektromos térerősség amplitúdója .

Adja meg a értékét a közeghatáron, az első közegben.

Megoldás

A megoldás során a távvezeték analógiát fogjuk felhasználni.

Először meg kell határoznunk a szigetelő reflexiós tényezőjét, ha a "lezárás" levegő:


A folytonossági feltételből következik, hogy a határfelületen az elektromos térerősség amplitúdója nem változhat meg:

130. Feladat: Elektromágneses síkhullám ideális szigetelőben

Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: . Az idő mértékegysége , a távolságé .

Határozza meg a közeg dielektromos állandóját!

Megoldás

A térerősség általános időfüggvénye: .

Ebből látszik, hogy jelen feladatban és .

Tudjuk azt is, hogy . Átrendezve: .

134. Feladat: Elektromágneses síkhullám szigetelő határfelületén

Levegőben terjedő síkhullám merőlegesen esik egy 200 hullámimpedanciájú ideális szigetelővel kitöltött végtelen féltér határfelületére. Mekkora a levegőben az elektromos térerősség maximális amplitúdója, ha a minimális amplitúdó levegőben 80 ?

Megoldás

Először a reflexiós tényezőt kell kiszámítani ahol .

A reflexiós tényezőből ki tudjuk számolni az állóhullámarányt.

(Ell.: 1 és között van.)

SWR=

135. Feladat: Elektromágneses síkhullám által gerjesztett áramsűrűség

Egy levegőben terjedő síkhullám merőlegesen esik egy végtelen kiterjedésű fémsík felületére. A síktól távolságra az elektromos térerősség komplex amplitúdója . Számítsa ki a felületi áramsűrűség nagyságát!

Megoldás

A távvezeték analógiát felhasználva a lezárás rövidzár, így .


Mivel vezetőben és azaz

136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása

Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:.Adja meg a mágneses térerősség x irányú komponensét!

Megoldás

Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.

Tehát:

//Bilicz azt mondta kell a Hx-hez egy negatív előjel

Poynting-vektor

137. Feladat: Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása

Levegőben síkhullám terjed a pozitív irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga .

Adja meg a Poynting-vektor időbeli átlagát!

Megoldás

A Poynting-vektor időbeli átlaga felírható az energiasűrűség időbeli átlagának és a fénysebességnek a szorzataként:


Másik megoldás, ha valaki esetleg nem ismerné a fenti magic képletet:

Az elektromos energiasűrűség időbeli átlaga levegőben definíció szerint felírható az alábbi módon:


A levegő hullámimpedanciája:


Ebből a Poynting-vektor időbeli átlaga már definíció szerint felírható:

142. Feladat: Hertz-dipólus távoltérben

Levegőben álló Hertz-dipólus távolterében az elektromos térerősség amplitúdója az antennától r távolságban, az antenna tengelyétől mért elevációs szög alatt . Adja meg az antenna által kisugárzott összes hatásos teljesítményt!

Megoldás
Hertz-dipólus távoltérben

143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény

Egy Hertz-dipólus az origó síkjában szögben áll. Írja fel az összes kisugárzott teljesítményt tartományban a Poynting-vektor és a Hertz-dipólus irányhatásának segítségével!

Megoldás

A Hertz-dipólus által kisugárzott teljes teljesítmény:

Felhasználható egyenletek:

, Hertz-dipólusra

Először is nézzük meg az irányhatás definícióját és alakítgassuk. A definícióban egy teljes gömbre számoljuk az eredményeket. Felhasználjuk, hogy a Poynting vektor térbeli átlaga, a kisugárzott teljesítmény, és egy R sugarú gömb felületének hányadosa.

Átrendezzük az egyenletett a keresett sugárzott telesítményre, és felhasználjuk, hogy a Hertz dipólus irányhatása 1.5

Ez a teljes gömbfelületen kisugárzott teljesítmény, de nekünk csak a tartományon kell, ami a sugárzás felső féltere. Mivel a Hertz-dipólus tere szimmetrikus az x-y síkra, így a gömbben sugárzott teljesítmény fele pont a felső térrészben sogárzott teljesítmény lesz:


149. Feladat: Koaxiális kábelben áramló teljesítmény

Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:

és

( és a radiális, és irányú egységvektorok)

Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara , a külső vezető belső sugara , a vezetők ideálisak, a kábel tengelye a irányú.

Megoldás

A Poynting-vektor kifejezése:

Megjegyzés: Mivel egyenáramról van szó, így nincs szükség a 2-vel való osztásra, hiszen egyenáram esetén a csúcsérték megmegegyezik az effektív értékkel.


Mivel tudjuk, hogy koaxiális kábelben a hatásos teljesítmény a dielektrikumban áramlik, így az áramló hatásos teljesítmény már meghatározható a Poynting-vektornak a dielektrikum keresztmetszetére vett felületintegráljával: