„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

David14 (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
 
(253 közbenső módosítás, amit 43 másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{Vissza|Elektromágneses terek alapjai}}
{{Vissza|Elektromágneses terek alapjai}}


Itt gyűjtjük a szóbeli vizsgán húzható számolási feladatokat. A bennük szereplő számadatok nem túl lényegesek, mivel a vizsgán is csak a számolás menetére és elméleti hátterére kíváncsiak.
Itt gyűjtjük a szóbeli vizsgán húzható számolási feladatokat. Az itt lévő feladatok csak iránymutatók, időközben lehetséges, hogy változtatnak a tételsoron. Nagyon sok beugró feladat kerül ki ezek közül is, így ahhoz is kiváló gyakorlás ezeket a feladatokat végigoldani.  


'''Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletes megoldással is.'''
A feladatokban szereplő számadatok nem túl lényegesek, mivel a vizsgán is csak a számolás menetére és elméleti hátterére kíváncsiak.
 
<span style="color: brown">
'''Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletes megoldással is.'''<br/>'''Hibák előfordulhatnak benne!!!'''<br/>'''Már az is nagy segítség, ha legalább az általad húzott feladat PONTOS szövegét és SORSZÁMÁT beírod ide!'''
</span>
 
Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a [[Segítség:Latex]] és a [[Segítség:LaTeX példák]] oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az [http://www.codecogs.com/latex/eqneditor.php Online LATEX editor] is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket.
De ha még ez se megy, akkor egyszerűen nézzél meg egy már fent lévő feladatot, hogy ott hogy vannak megoldva a speciális karakterek.


'''Már az is nagy segítség, ha legalább az általad húzott feladat PONTOS szövegét és SORSZÁMÁT beírod ide!'''
{{noautonum}}
{{noautonum}}
=== 36. Feladat: ===
 
 
== Elektrosztatika ==
 
 
=== 1. Feladat: Két töltött fémgömb között az elektromos térerősség ===
 
Két azonos <math>r_0=3 cm</math> sugarú fémgömb középpontjának távolsága <math>d=1.8m</math>. A gömbök közé <math>U_0=5kV</math> feszültséget kapcsolunk.
 
Határozza meg a középpontokat összekötő egyenes szakasz felezőpontjában az elektromos térerősséget.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Mivel <math>r_0 << d</math>, így a feladat megoldása során a helyettesítő töltések módszerét használjuk. Az <math>A</math> gömböt egy <math>Q</math>, a <math>B</math> gömböt pedig egy <math>-Q</math> nagyságú ponttöltéssel helyettesítjük.
 
Tudjuk, hogy egy ponttöltés elektromos potenciálja, attól <math>r</math> távolságra:
<math>\Phi (r) = {Q \over 4 \pi \varepsilon} \cdot {1 \over r}</math>
 
A gömb közötti feszültség felírható a két gömb potenciálkülönbségeként. A fenti képletet felhasználva:
 
<math>
U_0 = \Phi_A - \Phi_B =
\left( {Q \over 4 \pi \varepsilon} \cdot {1 \over r_0} + {-Q \over 4 \pi \varepsilon} \cdot {1 \over d}\right) -
\left( {Q \over 4 \pi \varepsilon} \cdot {1 \over d} + {-Q \over 4 \pi \varepsilon} \cdot {1 \over r_0}\right) =
</math>
 
 
::<math>
= {2Q \over 4 \pi \varepsilon} \cdot {1 \over r_0} - {2Q \over 4 \pi \varepsilon} \cdot {1 \over d}=
{Q \over 2 \pi \varepsilon} \cdot \left( {1 \over r_0} - {1 \over d} \right)
</math>
 
 
Ebből kifejezhető a gömbök <math>Q</math> töltésének nagysága:
 
<math>Q= { U_0 \cdot 2\pi \varepsilon \over {1 \over r_0} - {1 \over d} } </math>
 
Tudjuk, hogy egy ponttöltés elektromos térerőssége sugárirányú és attól <math>r</math> távolságra a nagysága:
<math>E (r) = {Q \over 4 \pi \varepsilon} \cdot {1 \over r^2}</math>
 
A gömbök középpontját összekötő egyenes felezőpontjában az elektromos térerősség felírható a két gömb elektromos terének szuperpozíciójaként. Mivel a térerősségvektorok egy egyenesbe esnek, és mindkét térerősségvektor a negatív töltésű <math>B</math> gömb felé mutat, így szuperpozíció egy algebrai összegé egyszerűsödik. A fenti képletet felhasználva:
 
<math>E_{d/2} = E_{A,d/2} + E_{B,d/2} =
{Q \over 4 \pi \varepsilon} \cdot {1 \over \left({d \over 2}\right)^2} +
{Q \over 4 \pi \varepsilon} \cdot {1 \over \left({d \over 2}\right)^2} =
{Q \over 4 \pi \varepsilon} \cdot \left( {4 \over d^2} + {4 \over d^2}\right) =
{Q \over \pi \varepsilon} \cdot {2 \over d^2}
</math>
 
Behelyettesítve a <math>Q</math> töltésre kiszámolt képletet:
 
<math>
E_{d/2} = { U_0 \cdot 2\pi \varepsilon \over {1 \over r_0} - {1 \over d} } \cdot {1 \over \pi \varepsilon} \cdot {2 \over d^2} =
{4U_0 \over \left( {1 \over r_0} - {1 \over d} \right) \cdot d^2 } =
{4 \cdot 5000 \over \left( {1 \over 0.03} - {1 \over 1.8} \right) \cdot 1.8^2 } \approx 188.3 \; {V \over m}
</math>
 
}}
 
=== 3. Feladat: Elektromos térerősség egyenletesen töltött henger belsejében ===
Levegőben álló, <math>d=10 cm</math> átmérőjű henger, egyenletes <math>\rho = 200 \; {nC \over m^3}</math> térfogati töltéssűrűséggel töltött. <math>\varepsilon_r = 1</math>.
 
Adja meg az elektromos térerősség nagyságát a henger belsejében, a tengelytől <math>a = {d \over 5}</math> távolságban!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Írjuk fel a Gauss-tételt egy olyan zárt <math>a<{d \over 2}</math> sugarú, <math>L</math> hosszúságú, <math>V</math> térfogatú és <math>A</math> felületű hengerre, melynek tengelye egybeesik a töltött henger tengelyével:
 
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \int_{V} \rho \; \mathrm{d}V</math>
 
 
<math>\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}</math>
 
 
<math>\oint_{A} \vec{E} \; \mathrm{d} \vec{s} = {1 \over \varepsilon_0 \varepsilon_r} \rho \cdot V</math>
 
Szimmetria okokból az elektromos térerősségvektorok minden pontban sugárirányúak. Ezáltal a térerősségvektorok a palást felületén mindenhol párhuzamosak a felület normálisával, míg a henger alaplapjain merőlegesek a felület normálisára, tehát a felületintegrál egy egyszerű szorzássá egyszerűsödik a paláston, míg az alaplapokon pedig konstans nulla értékű.
 
<math>E(a) \cdot 2 a \pi L = {1 \over \varepsilon_0 \varepsilon_r} \rho \cdot a^2 \pi L</math>
 
<math>E\left(a={d \over 5}\right) = {\rho \over 2 \varepsilon_0 \varepsilon_r} \cdot a =
{200 \cdot 10^{-9} \over 2 \cdot 8.85 \cdot 10^{-12} \cdot 1} \cdot {0.1 \over 5} \approx 226 \; {V \over m}
</math>
}}
 
 
===11. Feladat: Ismert potenciálú és töltésű fémgömb sugarának meghatározása ===
 
Egy levegőben álló, töltött fémgömb felszínén a felületi töltéssűrűség <math>\sigma = 10 \;{\mu C \over m^2}</math>. A gömb potenciálja a végtelen távoli ponthoz képest <math>\Phi_0=3kV</math>. Mekkora a gömb sugara?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Első körben határozzuk meg a fémgömb elektrosztatikus terének térerősségvektorát.
 
Ehhez írjuk fel a Gauss-tételt egy olyan <math>r>R</math> sugarú gömbfelületre, melynek középpontja egybeesik a fémgömb középpontjával.
 
 
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \int_{V} \rho \; \mathrm{d}V</math>
 
 
Felhasználva, hogy levegőben az elektromos térerősségvektor és az elektromos eltolásvektor kapcsolata:
 
<math>\vec{D} = \varepsilon_0 \vec{E}</math>
 
 
<math>\oint_{A} \vec{E} \; \mathrm{d} \vec{s} = {1 \over \varepsilon_0} \int_{V} \rho \; \mathrm{d}V</math>
 
Szimmetria okok miatt, az elektromos térerősségvektorok sugárirányúak lesznek és mivel a gömb pozitív töltésű, így a gömbtől elfelé mutatnak. Emiatt a felületintegrál egy egyszerű szorzássá egyszerűsödik. A térfogati töltéssűrűség integrálja az adott térfogatban lévő összetöltés. Mivel a fémgömb sugaránál minden esetben nagyobb sugarú gömb térfogatára integrálunk, így ez az érték konstans lesz és megegyezik a felületi töltéssűrűségnek fémgömb felületé vett integráljával. A felületi töltéssűrűség a fémgömb felületén állandó, így ez az integrál is egy egyszerű szorzássá egyszerűsödik. Tehát:
 
<math>\ E(r) \cdot 4r^2\pi = {1 \over \varepsilon_0} \cdot \sigma \cdot 4R^2\pi \longrightarrow
\vec{E}(r)={\sigma R^2 \over \varepsilon_0} \cdot {1 \over r^2} \cdot \vec{e}_r</math>
 
 
Most írjuk fel a fémgömb potenciáljára a definíciós képletet, feltéve hogy a gömbtől végtelen távoli pont potenciálja nulla:
 
 
<math>\Phi_0= \Phi(\infty) - \int_{\infty}^R \vec{E} \; \mathrm{d} \vec{l} =
0 - \int_{\infty}^R E(r) \; \mathrm{d} r =
- \int_{\infty}^R {\sigma R^2 \over \varepsilon_0} \cdot {1 \over r^2} \; \mathrm{d} r =
{\sigma R^2 \over \varepsilon_0} \int_{\infty}^R - {1 \over r^2} \; \mathrm{d} r =
</math>
 
 
::<math>
= {\sigma R^2 \over \varepsilon_0} \cdot \left[ {1 \over r} \right]_{\infty}^R =
{\sigma R^2 \over \varepsilon_0} \cdot \left( {1 \over R} - {1 \over \infty} \right)=
{\sigma R \over \varepsilon_0} \longrightarrow R = {\varepsilon_0 \Phi_0 \over \sigma} =
{8.85 \cdot 10^{-12} \cdot 3000 \over 10 \cdot 10^{-6}} \approx 2.655 \;mm
</math>
 
 
Természetesen a feladat ennél sokkal egyszerűbben is megoldható, ha tudjuk fejből a ponttöltés potenciálterének képletét. Ugyanis, ha használjuk a helyettesítő töltések módszerét és a gömb összes töltését egy ponttöltésbe sűrítjük a gömb középpontjába, akkor a gömb felületén a potenciál nem változik. Tehát:
 
 
<math>\Phi_0=\Phi(R) = {Q \over 4 \pi \varepsilon_0} \cdot {1 \over R} ={4R^2\pi \sigma \over 4 \pi \varepsilon_0} \cdot {1 \over R} =
{R \sigma \over  \varepsilon_0} \longrightarrow R = {\varepsilon_0 \Phi_0 \over \sigma} =
{8.85 \cdot 10^{-12} \cdot 3000 \over 10 \cdot 10^{-6}} \approx 2.655 \;mm</math>
}}
 
 
=== 19. Feladat: Gömbkondenzátor elektródáira kapcsolható maximális feszültség ===
 
Egy gömbkondenzátor belső elektródájának sugara <math>R_\mathrm{1}=4 \; mm</math>, külső elektródájának sugara <math>R_\mathrm{2}=6 \; mm</math>, a dielektrikum relatív dielektromos állandója <math>\varepsilon_r = 4.5</math>.
 
Legfeljebb mekkora feszültséget kapcsolhatunk a kondenzátorra, ha a térerősség a dielektrikumban nem haladhatja meg az <math>E_{max}=500\; {kV \over m}</math> értéket.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Legyen a belső, <math>R_\mathrm{1}</math> sugarú gömb töltése <math>Q</math>.
 
A Gauss törvény alkalmazásával könnyen meghatározhatjuk a gömbkondenzátor két elektródája közötti elektromos tér nagyságát, a középponttól mért <math>r</math> távolság függvényében:
 
<math>
  E(r) ={Q \over 4 \pi \varepsilon_0 \varepsilon_r} \cdot {1 \over r^2}
</math>
 
 
A fenti összefüggésből is látszik, hogy a dielektrikumban a legnagyobb térerősség a belső gömb felületén lesz, így ebből kifejezhető a <math>Q</math> töltés nagysága:
 
<math>
  E_{max} ={Q \over 4 \pi \varepsilon_0 \varepsilon_r} \cdot {1 \over {R_1}^2} \longrightarrow Q =
  E_{max} \cdot 4 \pi \varepsilon_0 \varepsilon_r \cdot {R_1}^2
</math>
 
 
A két elektróda közötti potenciálkülönbség:
 
<math>
  U_\mathrm{1,2}= -\int_{R_\mathrm{1}}^\mathrm{R_\mathrm{2}} \mathrm{E(r)} \; \mathrm{dr} 
  = - {Q \over 4 \pi \varepsilon_0 \varepsilon_r} \int_{R_\mathrm{1}}^\mathrm{R_\mathrm{2}} \mathrm{1 \over r^2} \; \mathrm{dr}
  = {Q \over 4 \pi \varepsilon_0 \varepsilon_r} \left( {1 \over R_\mathrm{1}} - {1 \over R_\mathrm{2}} \right)
</math>
 
 
A fenti összefüggéseket felhasználva meghatározható a két elektródára kapcsolható maximális feszültség:
 
<math>
  U_{max} = {E_{max} \cdot 4 \pi \varepsilon_0 \varepsilon_r \cdot {R_1}^2 \over 4 \pi \varepsilon_0 \varepsilon_r} \left( {1 \over R_\mathrm{1}} - {1 \over R_\mathrm{2}} \right) =
  E_{max} \left( R_1 - {(R_1)^2 \over R_2} \right)  =
  500 \cdot 10^3 \left( 4 \cdot 10^{-3} -  {(4 \cdot 10^{-3})^2 \over 6 \cdot 10^{-3}}\right)  = 666 \; V
</math>
 
 
 
}}
 
=== 22. Feladat: Elektródarendszer energiaváltozása széthúzás hatására ===
 
Levegőben egymástól <math>d_1=1m</math> távolságban helyezkedik el két kis sugarú elszigetelt fémgömb, melyek között az erő <math>F=5N</math> nagyságú erő hat.
 
Mekkora az elektromos mező energiájának megváltozása, miközben a gömbök távolságát <math>d_2=4m</math>-re növeljük?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Mivel <math>r_0 << d</math>, így a feladat megoldása során a helyettesítő töltések módszerét használjuk. Az <math>A</math> gömböt egy <math>Q_A</math>, a <math>B</math> gömböt pedig egy <math>Q_B</math> nagyságú ponttöltéssel helyettesítjük. A töltések előjelét már maga a változó magába foglalja.
 
A két ponttöltés között ható erő nagysága egyszerűen kifejezhető, melyet átrendezve megkaphatjuk a két töltés szorzatának nagyságát:
 
<math>F= {1 \over 4 \pi \varepsilon_0} \cdot {Q_A Q_B \over d_1^2} \longrightarrow Q_A Q_B = F \cdot 4 \pi \varepsilon_0 \cdot d_1^2 </math>
 
Tudjuk, hogy egy ponttöltés elektromos potenciálja, attól <math>r</math> távolságra:
<math>\Phi (r) = {Q \over 4 \pi \varepsilon} \cdot {1 \over r}</math>
 
Ezt felhasználva fejezzük ki az <math>A</math> és <math>B</math> gömbök potenciáljait:
 
<math>\Phi_A = {Q_A \over 4 \pi \varepsilon_0} \cdot {1 \over r_0} + {Q_B \over 4 \pi \varepsilon} \cdot {1 \over d} =
{1 \over 4 \pi \varepsilon_0} \cdot \left( {Q_A \over r_0} + {Q_B \over d} \right)</math>
 
 
<math>\Phi_B = {Q_A \over 4 \pi \varepsilon_0} \cdot {1 \over d} + {Q_B \over 4 \pi \varepsilon} \cdot {1 \over r_0} =
{1 \over 4 \pi \varepsilon_0} \cdot \left( {Q_A \over d} + {Q_B \over r_0} \right)</math>
 
Tudjuk, hogy egy levegőben elhelyezkedő elszigetelt elektródarendszer összenergiája:
<math>W_e={1 \over 2} \sum_{k=1}^n{ \Phi_k \cdot Q_k }</math>
 
Ezt felhasználva kifejezhető az elektromos mező energiájának megváltozása, miközben a két gömb távolgását <math>d_1</math>-ről <math>d_2</math>-re növeljük:
 
 
<math>\Delta W_e = W_{e2} - W_{e1} =</math>
 
 
<math> = {1 \over 2} \left[
{1 \over 4 \pi \varepsilon_0} \cdot \left( {Q_A \over r_0} + {Q_B \over d_2} \right) \cdot Q_A +
{1 \over 4 \pi \varepsilon_0} \cdot \left( {Q_A \over d_2} + {Q_B \over r_0} \right) \cdot Q_B
\right] </math>
 
<math>
-{1 \over 2} \left[
{1 \over 4 \pi \varepsilon_0} \cdot \left( {Q_A \over r_0} + {Q_B \over d_1} \right) \cdot Q_A +
{1 \over 4 \pi \varepsilon_0} \cdot \left( {Q_A \over d_1} + {Q_B \over r_0} \right) \cdot Q_B
\right] =</math>
 
 
 
 
<math>
= {1 \over 8 \pi \varepsilon_0} \cdot \left[ 2 \cdot {Q_A Q_B \over d_2} - 2 \cdot {Q_A Q_B \over d_1}\right] =
{Q_A Q_B \over 4 \pi \varepsilon_0} \cdot \left( {1 \over d_2} - {1 \over d_1} \right)
</math>
 
 
Most behelyettesítjük a megadott adatokat és az imént kiszámolt <math>Q_AQ_B</math> szorzat értékét:
 
<math>\Delta W_e =
F \cdot 4 \pi \varepsilon_0 \cdot d_1^2 \cdot {1 \over 4 \pi \varepsilon_0} \cdot \left( {1 \over d_2} - {1 \over d_1} \right) =
F \cdot  d_1^2 \cdot \left( {1 \over d_2} - {1 \over d_1} \right) =
5 \cdot  1^2 \cdot \left( {1 \over 4} - {1 \over 1} \right) = -3.75 \; J
</math>
 
 
''Megjegyzés:'' Jelen esetben a képletbe pozitív számként helyettesítettük be az F erő nagyságát. Ezzel azt feltételeztük, hogy <math>Q_AQ_B</math> szorzat pozitív értékű, azaz a két gömb töltése azonos előjelű, tehát köztük taszítóerő lép fel. A kapott negatív eredmény ennek meg is felel, hiszen ha két gömb taszítja egymást és mi megnöveljük a köztük lévő távolságot, akkor energiát adnak le, miközben munkát végeznek a környezetükön.<br/> Ha azonban F helyére negatívan helyettesítenénk be az 5N értékét, akkor azt feltételezném, hogy a gömbök vonzzák egymást. Ekkor pozitív eredményt kapnánk, ami szintén megfelel a várakozásoknak, hiszen két egymást vonzó gömb közötti távolságot csakis úgy tudom megnövelni, ha rajtuk munkát végzek és ezáltal megnövelem az energiájukat.
}}
 
=== 24. Feladat: Elektródarendszer energiája ===
 
Két elektródából és földből álló elektródarendszer föld- és főkapacitásai: <math>C_{10}, C_{20}, C_{12}</math>. Az elektródák potenciálja <math>\varphi_{1}, \varphi_{2}</math> a föld potenciálját válasszuk nullának: <math>\varphi_{0}=0</math>.
 
Mekkora az elektródarendszerben tárolt elektrosztatikus energia?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
[[File:Terek_24_Feladat.PNG | 500px]]
 
Az elektródarendszerben tárolt teljes elektrosztatikus energia a föld- és főkapacitásokban tárolt összenergiával egyezik meg. Egy kondenzátor elektrosztatikus energiája:
 
<math>
w_e = { 1 \over 2 } \sum_k { \Phi_k Q_k} =
{ 1 \over 2 } \left( \Phi^+ Q + \Phi^- (-Q) \right) =
{ 1 \over 2 } Q \left( \Phi^+ - \Phi^- \right) =
{ 1 \over 2 } Q U =
{ 1 \over 2 } (CU) U =
{ 1 \over 2 } C U^2
</math>
 
 
Ezt felhasználva a három kapacitásban tárolt összenergia:
 
<math>
W_e =  \frac{1}{2}C_{12}(\varphi _{1}-\varphi _{2})^{2}+\frac{1}{2}C_{10}(\varphi _{1})^{2}+\frac{1}{2}C_{20}(\varphi _{2})^{2}
</math>
 
}}
 
===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===
 
Egy levegőben álló, zérus össztöltésű fém gömbhéj belső sugara <math>r</math>, külső sugara <math>1.5 \; r</math>. A gömbhéj középpontjában <math>Q</math> ponttöltés van.
 
Adja meg a gömbhéj külső és belső felszínén felhalmozódó felületi töltéssűrűségek hányadosát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
[[File:Terek_szóbeli_feladatok_gömbhlj_erővonalkép.JPG|300px]]
 
 
Mivel a fém gömbhéj földeletlen és össztöltése zérus, így a töltésmegosztás következtében a fenti töltéselrendeződés alakul ki.
 
Azaz a fémgömbhéj belső felszíne <math>-Q</math>, a külső felszíne pedig <math>+Q</math> töltésű lesz, egyenletes töltéseloszlással.
 
A külső és belső felszínen felhalmozódó felületi töltéssűrűségek hányadosa tehát:
 
<math>{\sigma_k \over \sigma_b} =
{ {+Q \over 4 \pi \left(1.5r \right)^2 } \over  {-Q \over 4 \pi r^2 } } =
- { r^2 \over \left(1.5r \right)^2 } =
- { 1 \over 1.5^2 } =
- { 4 \over 9 } \approx -0.4444</math>
 
}}
 
=== 27. Feladat: R sugarú egyenletesen töltött gömb D tere ===
 
Egy R sugarú gömb egyenletes <math>\rho</math> térfogati töltéssűrűséggel töltött.
 
Adja meg az elektromos eltolás nagyságát a középpontól 2R távolságban.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Írjuk fel a Gauss-törvényt egy zárt, <math>r > R</math> sugarú, <math>A</math> felületű gömbre, melynek középpontja egybeesik a töltött gömb középpontjával:
 
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \int_{V} \rho \; \mathrm{d}v</math>
 
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \rho \cdot {4 R^3 \pi \over 3}</math>
 
Szimmetria okokból az elektromos eltolásvektorok a gömb felületének minden pontjában sugárirányúak, azaz párhuzamosak a felület normálisával, tehát a felületintegrál szorzássá egyszerűsödik.
 
<math>\vec{D}(r) \cdot 4 r^2 \pi = \rho \cdot {4 R^3 \pi \over 3}</math>
 
<math>\vec{D}(r) = { \rho R^3 \over 3} \cdot {1 \over r^2} \cdot \vec{e}_r</math>
 
<math>\vec{D}(2R) = { \rho R \over 12} \cdot \vec{e}_r</math>
 
}}
 
=== 28. Feladat: Gömb kapacitása a végtelenhez képest ===
 
Levegőben áll egy <math>20cm</math> sugarú fémgömb, amelyet egyenletes <math>3cm</math> vastagságú <math>4.5</math> relatív dielektromos állandójú szigetelő réteg borít.
 
Adja meg a gömb kapacitását a végtelen távoli térre vonatkoztatva!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Legyen <math>r_1</math> csak a fémgömb és <math>r_2</math> a teljes golyó sugara, valamint <math>r_0=\infty</math>.
 
 
 
Ekkor az elektromos térerősség:
 
<math>
E(r) =
\begin{cases}
{\frac Q {4\pi\varepsilon_0} \cdot \frac 1 {r^2} }, & \text{ha }r>r_2 \\
{\frac Q {4\pi\varepsilon} \cdot \frac 1 {r^2} }, & \text{ha }r_1<r<r_2
\end{cases}
</math>
 
 
 
Az elektromos potenciál:
 
<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>
 
/*Szerintem rosszak az integrálási határok, fel vannak cserélve és így negatív eredményt kapunk.*/
 
Felhasználva a <math>C=\frac Q U</math> formulát:
 
<math>
C=4\pi{\varepsilon_0} \cdot \left(\frac 1 {\frac 1 {r_2} + \frac 1 {\varepsilon_{_{_r}}}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)}\right) = 24.78pF
</math>
 
 
/*<math>\varepsilon_r</math> Nem viselkedik valami jól az utolsó képletben.*/
/*Kókányoltam rajta egy kicsit, de még mindig rossz*/
 
 
 
}}
 
== Stacionárius áramlási tér ==
 
=== 34. Feladat: Áramsűrűség meghatározása egy felület másik oldalán ===
 
Adott <math>Z=0</math> sík. A <math>\sigma</math> vezetőképesség: <math>Z>0</math> esetén <math>\sigma = \sigma^+</math> és <math>Z<0</math> esetén <math>\sigma = \sigma^-</math>. Adott <math>J_1 = J_1(x) \cdot e_x + J_1(z) \cdot e_z</math> áramsűrűség a sík egyik oldalán.
 
Határozza meg az áramsűrűség függvényt a felület másik oldalán!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
<!-- Szerintetek ez jó? Mivel stacionárius áramlási tér van, ezért a a felületen töltés nem halmozódhat fel. Így a J normálisoknak meg kellene egyeznie! Nem? 2019.01.10 -->
Tudjuk, hogy <math >E = { J \over \sigma } </math>
 
Továbbá <math>E_{t1} = E_{t2}</math> és <math>D_{n2} = D_{n1} + \sigma </math> (!!! ez itt felületi töltéssűrűség, ami a példában 0), tehát <math>D_{n2} = D_{n1}</math>
 
Ezekből következik, hogy: <math>E_1 = E_2</math>
 
Azaz: <math>{J_1 \over \sigma^-} = {J_2 \over \sigma^+}</math>
 
<math>J_2 = J_1(x) \cdot e_x\cdot {\sigma^+ \over \sigma^-} + J_1(z) \cdot e_z \cdot {\sigma^+ \over \sigma^-}</math>
}}
 
=== 36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása ===


Adott egy pontszerű <math>I=10A</math> áramerősségű pontszerű áramforrás egy <math>\sigma =200 {S \over m}</math> fajlagos vezetőképességű közegben.<br/>Határozza meg a teljesítménysűrűséget a forrástól <math>R=3m</math> távolságban.
Adott egy pontszerű <math>I=10A</math> áramerősségű pontszerű áramforrás egy <math>\sigma =200 {S \over m}</math> fajlagos vezetőképességű közegben.<br/>Határozza meg a teljesítménysűrűséget a forrástól <math>R=3m</math> távolságban.
16. sor: 438. sor:
A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.
A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.


Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.<br/>Felírva a Gauss-törvényt egy V térfogatú S felületű gömbre, melynek középpontja a ponttöltés:
Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.<br/>Felírva a Gauss-törvényt egy <math>V</math> térfogatú <math>A</math> felületű gömbre, melynek középpontja a ponttöltés:


<math>\oint_S \vec{D} d \vec{A}=\int_V \rho dV</math>
<math>\oint_A \vec{D} \; \mathrm{d} \vec{s}=\int_V \rho \; \mathrm{d} V</math>


Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:


<math>D(r)4r^2\pi = Q \longrightarrow \vec{D}(r)={Q \over 4 \pi} {1 \over r^2}* \vec{e}_r</math>
<math>D(r)4r^2\pi = Q \longrightarrow \vec{D}(r)={Q \over 4 \pi} {1 \over r^2} \cdot \vec{e}_r</math>


Most felhasználva a betűcserés analógiát, megkapható a pontszerű áramforrás áramsűrűségvektora:
Most felhasználva a betűcserés analógiát, megkapható a pontszerű áramforrás áramsűrűségvektora:
30. sor: 452. sor:
<math>I \longleftrightarrow Q</math>
<math>I \longleftrightarrow Q</math>


<math>\vec{J}(r)={I \over 4 \pi} {1 \over r^2} *\vec{e}_r</math>
<math>\vec{J}(r)={I \over 4 \pi} {1 \over r^2} \cdot \vec{e}_r</math>


Az áramsűrűség segítségével pedig pedig felírható a teljesítménysűrűség a távolság függvényében:
Az áramsűrűség segítségével pedig pedig felírható a teljesítménysűrűség a távolság függvényében:


<math>
<math>
p(r)={\left( J(r) \right) ^2 \over \sigma} =\left( {I \over 4 \pi} {1 \over r^2} \right) ^2 * {1 \over \sigma} =
p(r)={\left( J(r) \right) ^2 \over \sigma} =\left( {I \over 4 \pi} {1 \over r^2} \right) ^2 \cdot {1 \over \sigma} =
{I^2 \over 16 \pi^2 \sigma} {1 \over r^4}
{I^2 \over 16 \pi^2 \sigma} {1 \over r^4}
</math>
</math>
42. sor: 464. sor:


<math>
<math>
p(R)={10^2 \over 16 \pi^2 200} {1 \over 3^4} \approx 39.09 {\mu W \over m^3}
p(R)={10^2 \over 16 \pi^2 200} {1 \over 3^4} \approx 39.09 \; {\mu W \over m^3}
</math>
</math>


}}
}}


=== 38. Feladat: Koaxiális kábel szivárgási ellenállásából fajlagos vezetőképesség számítása ===
=== 38. Feladat: Koaxiális kábel szivárgási ellenállásából fajlagos vezetőképesség számítása ===
58. sor: 481. sor:


<math>
<math>
U =- \int_{r_2}^{r_1} \vec{E}(r) d \vec{r} = - \int_{r_2}^{r_1} {q \over 2 \pi \varepsilon } * {1 \over r} dr = -{q \over 2 \pi \varepsilon }* \left[ ln(r) \right]_{r_2}^{r_1} = {q \over {2\pi \varepsilon }}\ln {{{r_2}} \over {{r_1}}}
U =- \int_{r_2}^{r_1} \vec{E}(r) d \vec{r} = - \int_{r_2}^{r_1} {q \over 2 \pi \varepsilon } \cdot {1 \over r} dr = -{q \over 2 \pi \varepsilon } \cdot \left[ ln(r) \right]_{r_2}^{r_1} = {q \over {2\pi \varepsilon }}\ln {{{r_2}} \over {{r_1}}}
</math>
</math>


72. sor: 495. sor:


<math>
<math>
C \buildrel \Delta \over = {Q \over U} = {{ql} \over U} \to C' = {C \over l} = {{{{ql} \over U}} \over l} = {q \over U} = { U {2 \pi \varepsilon \over ln{r_2 \over r_1}}} * {1 \over U } = {{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}}
C \buildrel \Delta \over = {Q \over U} = {{ql} \over U} \to C' = {C \over l} = {{{{ql} \over U}} \over l} = {q \over U} = { U {2 \pi \varepsilon \over ln{r_2 \over r_1}}} \cdot {1 \over U } = {{2\pi \varepsilon } \over {\ln {{{r_2}} \over {{r_1}}}}}
</math>
</math>


100. sor: 523. sor:


<math>
<math>
G' = {{2\pi \sigma } \over {\ln {{{r_2}} \over {{r_1}}}}} = {1 \over R}{1 \over l} \to \sigma  = {{\ln {{{r_2}} \over {{r_1}}}} \over {2\pi }}{1 \over R}{1 \over l} = {ln {6 \over 2} \over 2 \pi} * {1 \over 4 * 10^6} * {1 \over 200} \approx 218.6 {pS \over m}
G' = {{2\pi \sigma } \over {\ln {{{r_2}} \over {{r_1}}}}} = {1 \over R}{1 \over l} \to \sigma  = {{\ln {{{r_2}} \over {{r_1}}}} \over {2\pi }}{1 \over R}{1 \over l} = {ln {6 \over 2} \over 2 \pi} \cdot {1 \over 4 \cdot 10^6} \cdot {1 \over 200} \approx 218.6 \; {pS \over m}
</math>
</math>
}}
}}


=== 42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása ===
=== 42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása ===
Stacionárius áramlási térben az áramsűrűség <math> \vec{J} = \vec{e}_z* 5 {kA \over m^2} </math>. Mekkora a z-tengellyel 60°-os szöget bezáró <math> A=80 cm^2 </math> felületen átfolyó áram?
Stacionárius áramlási térben az áramsűrűség <math> \vec{J} = 5 \vec{e}_z \;{kA \over m^2} </math>. Mekkora a z-tengellyel 60°-os szöget bezáró <math> A=80 cm^2</math> felületen átfolyó áram?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
111. sor: 535. sor:
A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát:
A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát:


<math>I = \int_A \vec{J} d \vec{A}</math>
<math>I = \int_A \vec{J} d \vec{s}</math>


Esetünkben a J áramsűrűség-vektor z irányú, így nekünk a felületre normális komponensével kell számolnunk:
Esetünkben a J áramsűrűség-vektor z irányú, így nekünk a felületre normális komponensével kell számolnunk:


<math> I = J  A  \sin60^\circ=5000*80*10^{-4}*\sin60^\circ= 34.64A</math>
<math> I = J  A  \sin60^\circ=5000 \cdot 80 \cdot 10^{-4} \cdot \sin60^\circ= 34.64 \; A</math>
 
}}
 
== Stacionárius mágneses tér ==
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).
 
A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
(ábra a megoldásnál)
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


[[File:Terek_szóbeli_feladatok_magnesesfelegyenes.jpg|300px]]
}}
}}


129. sor: 567. sor:
Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.
Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.


A mágneses térerősséget egy olyan L körvonalon integráljuk, ami által kifeszített S felület középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.
A mágneses térerősséget egy olyan L körvonalon integráljuk, ami által kifeszített A felület középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.


<math>\oint_L \vec{H} d \vec{l} = \int_S \vec{J} d \vec{A} = I</math>
<math>\oint_L \vec{H} \; d \vec{l} = \int_A \vec{J} \; d \vec{s} = I</math>


<math>H_1 2 d \pi = I_1 \longrightarrow H_1 = \frac{I_1}{2 d \pi}</math>
<math>H_1 2 d \pi = I_1 \longrightarrow H_1 = \frac{I_1}{2 d \pi}</math>


Tudjuk még, hogy <math>B = \mu_0 H</math> vákuumban.
Tudjuk még, hogy <math>B = \mu_0 H</math> vákuumban.


A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:
A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:


<math>F = q (v \times B ) = I (l \times B)</math>, ahol <math>I</math> a konstans áramerősség, <math>l</math> pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.
<math>\vec{F} = q \cdot (\vec{v} \times \vec{B} ) = I \cdot (\vec{l} \times \vec{B})</math>, ahol <math>I</math> a konstans áramerősség, <math>\vec{l}</math> pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.
 


Innen a megoldás:
Innen a megoldás:
149. sor: 590. sor:
<math>F = 2 \cdot 10^{-7} N</math>
<math>F = 2 \cdot 10^{-7} N</math>
}}
}}


=== 52. Feladat: Két toroid tekercs kölcsönös indukciója===
=== 52. Feladat: Két toroid tekercs kölcsönös indukciója===
Egy toroidra két tekercs van csévélve, az egyik menetszáma <math>N_1</math>, a másiké <math>N_2</math>. A toroid közepes sugara <math>r</math>,  
Egy toroidra két tekercs van csévélve, az egyik menetszáma <math>N_1</math>, a másiké <math>N_2</math>. A toroid közepes sugara <math>r</math>,  
keresztmetszetének felülete <math>A</math>, relatív permeabilitása <math>\mu_r</math>.<br/>Határozza meg a két tekercs kölcsönös induktivitását!
keresztmetszetének felülete <math>A</math>, relatív permeabilitása <math>\mu_r</math>.<br/>Határozza meg a két tekercs kölcsönös induktivitását!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=A kölcsönös induktivitás definíció szerint:
|szöveg=
 
A kölcsönös induktivitás definíció szerint egyenlő az első tekercsnek a másodikra vonatkoztatott induktivitásával, valamint a második tekercsnek az első tekercse vonatkoztatott induktivitásával. Tehát elég csak az utóbbit meghatároznunk.
 
A második tekercsnek az elsőre vonatkoztatott kölcsönös induktivitása definíció szerint, a második tekercs árama által az első tekercsben indukált fluxus és a második tekercs áramának hányadosa feltéve, hogy az első tekercs árama zérus:
 
<math>M=L_{21}=L_{12}=\frac{\Psi_1}{I_2} |_{(I_1=0)}</math>
 
Szimmetria okokból a második tekercs árama által az első tekercsben indukált teljes fluxus egyenlő az első tekercs egyetlen menetében indukált fluxus N1-szeresével.
 
<math>M= \frac{N_1\Phi_{1}}{I_2}</math>
 
Az első tekercs egyetlen menetében, a második tekercs árama által indukált fluxust megkapjuk, ha a második tekercs árama által keltett mágneses mező indukcióvektorát integráljuk az első tekercs keresztmetszetén:


<math>L_{12}=\frac{\Psi_{21}}{I}=\frac{N_2\Phi_{21}}{I}=\frac{N_2\int_{A_1} \vec{B_2}\mathrm{d}\vec{A_1}}{I}=\frac{N_2B_2N_1A}{I}=
<math>M=\frac{N_1 \int_{A} \vec{B_2}\mathrm{d}\vec{s}}{I_2}</math>
\frac{N_2\mu_0\mu_rH_2N_1A}{I}=\frac{N_2\mu_0\mu_rIN_1A}{I2r\pi}=\frac{\mu_0\mu_rN_1N_2A}{2r\pi}</math>


}}
A mágneses indukcióvektor párhuzamos a toroid keresztmetszetének normálisával, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
 
<math>M=\frac{N_1 B_2 A}{I_2}</math>


=== 57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
A mágneses indukció definíció szerint kifejezhető a mágneses térerősséggel:


Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z )*e^{j \pi / 3} {kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!
<math>M=\frac{N_1 \mu_0 \mu_r H_2 A}{I_2}</math>


{{Rejtett
A második tekercs árama által indukált mágneses térerősség az Ampere-féle gerjesztési törvénnyel megadható. Ha a toroid közepes sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített körlapon összesen N2-ször döfi át egy-egy I2 áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:
|mutatott='''Megoldás'''
|szöveg=


A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
<math>\oint_L \vec{H} \mathrm{d} \vec{l} = \sum{I}  </math>


Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
<math> 2r \pi H_2= N_2 I_2  \longrightarrow  H_2={N_2 I_2\over 2r \pi}</math>


<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>


Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
Ezt felhasználva a két egymásra csévélt toroid tekercs kölcsönös induktivitása:


<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
<math>M=\frac{N_1 \mu_0 \mu_r N_2 I_2 A}{2r \pi I_2} = \frac{ \mu_0 \mu_r N_1 N_2 A}{2r \pi}</math>


<math>\vec{E}_y=5e^{j \pi / 3}* \vec{e}_y {kV \over m}</math>


<math>\vec{E}_z= - 12e^{j \pi / 3}* \vec{e}_z  {kV \over m}</math>
Csak a poén kedvéért ellenőrizzük a kapott eredményt dimenzióra is:


Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
<math>\left[ {{H \over m} \cdot m^2 \over m} = H\right]</math>


<math>\vec{H}_z={E_y \over Z_0}*\vec{e}_z \approx 13.26e^{j \pi / 3}* \vec{e}_z {A \over m}</math>
}}


<math>\vec{H}_x={E_z \over Z_0}*\vec{e}_x \approx - 31.83e^{j \pi / 3}* \vec{e}_x {A \over m}</math>


A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
=== 53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon===


<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26\vec{e}_z - 31.83\vec{e}_x)*e^{j \pi / 3} {A \over m}</math>
Toroid alakú vasmagon egy <math>N_1=300</math> és egy <math>N_2=500</math> menetes tekercs helyezkedik el. Az <math>N_1</math> menetszámú tekercs öninduktivitása <math>L_1=0,9H</math>. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


}}
}}


=== 58. Feladat: Toroid tekercs fluxusa és energiája===
=== 58. Feladat: Toroid tekercs fluxusa és energiája===
204. sor: 661. sor:
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.
|szöveg=Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.


Egy bármilyen tekercs fluxusa az <math>\Psi=LI</math> képletből számolható. Ez alapján a toroid fluxusváltozása: <math>\frac{\Psi_2}{\Psi_1}=\frac{LI_2}{LI_1}=\frac{I_2}{I_1}=2.5</math>
Egy bármilyen tekercs fluxusa az <math>\Psi=LI</math> képletből számolható. Ez alapján a toroid fluxusváltozása:
 
<math>\frac{\Psi_2}{\Psi_1}=\frac{LI_2}{LI_1}=\frac{I_2}{I_1}=2.5</math>
 
Egy bármilyen tekercs energiája számolható a <math>W=\frac{1}{2}LI^2</math> képlet alapján. Tehát a toroid energiaváltozása:
 
<math>\frac{W_2}{W_1}=\frac{\frac{1}{2}L \cdot I_2^2}{\frac{1}{2}L \cdot I_1^2}=\frac{I_2^2}{I_1^2}=2.5^2=6.25</math>
}}
 
=== 59. Feladat: Kölcsönös indukciós együttható meghatározása a Biot-Savart törvény segítségével ===
 
Egy szabályos kör alakú <math>R</math> sugarú körvezetővel egy síkban, a körvezető középpontjában helyezkedik el egy <math>a</math> oldalhosszúságú négyzet alakú vezető keret. Határozza meg a két vezető keret kölcsönös indukciós együtthatóját a Biot-Savart törvény segítségével, ha <math>a << R</math> !
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A kölcsönös indukciós együttható azt mutatja meg, hogy mekkora fluxust hoz létre egy vezető hurok árama egy másik vezető hurokban.
 
Legyen a külső kör alakú vezetőben folyó áram <math>I</math>! Mivel <math>a << R</math>, ezért azt kell meghatározni, hogy ez az <math>I</math> áram mekkora mágneses térerősséget hoz létre a körvezető középpontjában, ahol a négyzetes vezető elhelyezkedik. Ezt a Biot-Savart törvénnyel meg lehet határozni, így megkapjuk <math>L_{1,2}= \frac{\phi_{2}}{I}</math> kölcsönös indukciós együttható értékét.
 
A Biot-Savart törvény : <math>\mathbf{H} = \frac{I}{4\pi }\oint \frac{d\mathbf{l}\times \mathbf{r_{0}}}{r^{2}}</math>, ahol <math>r_{0}</math> az elemi <math>d\mathbf{l}</math> szakaszból a vizsgált pontba mutató egységvektor (fontos, hogy EGYSÉG-vektor, mert ha nem az egységvektorral számolunk, akkor a nevezőben nem négyzetes, hanem köbös a távolság). Mivel a vizsgált pont a körvezető középpontja, így a távolság végig <math>R</math> és a körintegrálás a körvezető keret kerületével való szorzássá egyszerűsödik:
 
<math>\mathbf{H} = \frac{I}{4\pi R^{2} } \cdot 2R\pi</math>
 
<math>\mathbf{H} = \frac{I}{2R}</math>
 
<math>\mathbf{B} = \mu_{0} \mathbf{H}</math>
 
<math>\phi = \int_{A}^{ } \mathbf{B} dA</math>
 
Mivel <math>a << R</math> ezért volt elég a középpontban kiszámolni a térerősséget és a kis négyzetes vezető fluxusát így közelíteni:
 
<math>\phi_{2} = \mathbf{B} a^{2}</math>
 
Végül mindent behelyettesítve: <math>L_{1,2}= \frac{\mu_{0} a^{2}}{2R}</math>


Egy bármilyen tekercs energiája számolható a <math>W=\frac{1}{2}LI^2</math> képlet alapján. Tehát a toroid energiaváltozása: <math>\frac{W_2}{W_1}=\frac{\frac{1}{2}L*I_2^2}{\frac{1}{2}L*I_1^2}=\frac{I_2^2}{I_1^2}=2.5^2=6.25</math>
}}
}}


=== 59. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény ===
 
=== ???. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény ===
 
A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!
Eddig ez az 59.-es volt, de biztos nem ez a valódi sorszáma, 59. fentebb.


Adott egy kondenzátor, melynek fegyverzetei között egy <math>\sigma=50 {nS \over m}</math> fajlagos vezetőképességű dielektrikum helyezkedik el.
Adott egy kondenzátor, melynek fegyverzetei között egy <math>\sigma=50 {nS \over m}</math> fajlagos vezetőképességű dielektrikum helyezkedik el.
218. sor: 713. sor:
|szöveg=
|szöveg=


A dielektrikum <math>G</math> konduktanciájának meghatározására alkalmazható stacionárius áramlás - elektrosztatika betűcserés analógia, mivel a két jelenséget ugyanolyan alakú differenciálegyenletek és azonos peremfeltételek írják le.
A dielektrikum <math>G</math> konduktanciájának meghatározására alkalmazható stacionárius áramlási tér - elektrosztatika betűcserés analógia, mivel a két jelenséget ugyanolyan alakú differenciálegyenletek és azonos peremfeltételek írják le. Így elég csak a síkkondenzátor kapacitásának képletét ismernünk:
 
<math>G=C_{\varepsilon \leftarrow \sigma}=
\sigma {A \over d}=50 \cdot 10^{-9} \cdot {100 \cdot 10^{-4} \over 20 \cdot 10^{-3}}=2.5 \cdot 10^{-8} \;S</math>


<math>G=C_{\varepsilon \leftarrow \sigma}=\sigma {A \over d}=50*10^{-9}*{100*10^{-4} \over 20*10^{-3}}=2.5*10^{-8} S</math>


A dielektrikumban disszipált teljesítmény innét már könnyen számolható az ismert képlet alapján:
A dielektrikumban disszipált teljesítmény innét már könnyen számolható az ismert képlet alapján:


<math>P=U^2G=1200^2*2.5*10^{-8}=36 mW</math>
<math>P=U^2G=1200^2 \cdot 2.5 \cdot 10^{-8}=36 \; mW</math>
 
}}
 
 
===61. Feladat: Toroid tekercs mágneses indukciója ===
 
Adott egy kör keresztmetszetű toroid alakú, <math>\mu_r = 1200</math> relatív permeabilitású, <math>N=200</math> menetes tekercs, melynek átlagos erővonal hossza <math>L=60cm</math>.<br/>A tekercselésben <math>I=0.3 A</math> nagyságú áram folyik.
 
Adja meg a mágneses indukció nagyságát a toroid belsejében! Miért ad jó értéket a közelítő számításunk?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az Ampere-féle gerjesztési törvényből következik, hogyha a toroid közepes sugarához sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor. Ez onnét látható, hogy ha veszünk a toroid tekercseléséből egyetlen menetet, akkor arra igaz, hogy a menet minden kis szakaszában folyó áram által keltett mágneses mező a jobbkéz-szabály (I - r - B) szerint a menet síkjára merőleges irányú mágneses térerősségvektort hoz létre.
 
Tehát a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített A területű körlapot összesen N-ször döfi át egy-egy I áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:
 
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s} </math>
 
<math> H \cdot L = N \cdot I  \longrightarrow  H = {N I \over L} \longrightarrow B =\mu_0 \mu_r {N I \over L}</math>
 
Ha az átlagos erővonalhossz, vagyis a toroid közepes kerülete jóval nagyobb mint a toroid közepes sugara és a toroid külső és belső sugarának különbsége jóval kisebb mint a közepes sugár, akkor az erővonalak jó közelítéssel homogén sűrűségűek és szabályos koncentrikus köröket alkotnak. Ha ezek a feltételek teljesülnek, akkor fenti eredmény jó közelítéssel megadja a toroid teljes belsejében <math>\left( R_b<r<R_k \right)</math> a mágneses indukció nagyságát:
 
 
<math>B(r) =\mu_0 \mu_r {N I \over L} =4\pi \cdot 10^{-7} \cdot 1200 \cdot {200 \cdot 0.3 \over 0.6} \approx  0.151 \; T </math>
 
}}
 
===62. Feladat: Szolenoid tekercs mágneses indukciója ===
 
Adott: <math>A=5cm^2</math>, <math>N=1000</math>, <math>L=???</math>, <math>\mu_r =???</math>.
 
Adja meg a mágneses indukció nagyságát a Szolenoid belsejében!
 
=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===
 
Hosszú, <math>R</math> sugarú alumínium vezetőben <math>I</math> áram folyik.
 
Határozza meg a vezető környezetében a mágneses teret! Mennyi mágneses energia raktározódik a vezető egység hosszú szakaszában?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az Ampere-féle gerjesztési törvényt írjuk fel egy olyan zárt r sugarú, L körvonalra, amely által kifeszített A körlap merőleges a vezetékre és a vezeték tengelye pont a közepén döfi át.
 
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>
 
Szimmetria okokból a mágneses térerősségvektorok az L görbe minden pontjában érintő irányúak lesznek, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik minden esetben. Az egyenlet jobb oldala miatt viszont két esetre kell bontanunk a vizsgálódást:
 
 
'''1. Eset:''' Ha a vezetéken kívül vagyunk <math>(r>R)</math>, akkor az áramsűrűség felületintegrálja a vezeték teljes áramával egyenlő.
 
<math>H(r) \cdot 2r\pi = I \longrightarrow  \vec{H}(r) = {I \over 2r\pi} \cdot \vec{e}_{\varphi}</math>
 
 
'''2. Eset:''' Ha a vezetéken belül vagyunk <math>(r \leq R)</math>, akkor a teljes <math>I</math> áramnak csak a felületarányos része lesz az áramsűrűség integráljának eredménye.
 
<math>H(r) \cdot 2r\pi = J \cdot r^2 \pi </math>
 
<math>H(r) \cdot 2r\pi = {I \over R^2 \pi} \cdot r^2 \pi \longrightarrow \vec{H}(r) =
{I \over 2R^2\pi} \cdot r \cdot \vec{e}_{\varphi}</math>
 
 
A vezeték egységnyi hosszában tárolt mágneses energia meghatározására az ismert összefüggés:
 
<math>W_m={1 \over 2} \int_V \vec{H} \cdot \vec{B} \; \mathrm{d} V  </math>
 
Mivel homogén közegben <math>\vec{B}=\mu \vec{H}</math>, azaz a vektorok egy irányba mutatnak minden pontban, így a skaláris szorzatuk megegyezik a vektorok nagyságának szorzatával. Azonban a mágneses térerősségvektor nagysága függ a sugártól, ezért célszerűen áttérünk hengerkoordináta-rendszerbe és ott végezzük el az integrálást (egy r szorzó bejön a Jacobi-determináns miatt):
 
<math>W_m={1 \over 2}  \int_0^R \int_{0}^{2\pi} \int_0^1 \mu H^2(r) \cdot r \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
{1 \over 2} \mu \int_0^R \int_{0}^{2\pi} \int_0^1 \left({I \over 2R^2\pi} \cdot r \right)^2 \cdot r \;\mathrm{d}z \mathrm{d}\varphi \mathrm{d}r =
{\mu I^2 \over 8 R^4 \pi^2}  \int_0^R \int_{0}^{2\pi} \int_0^1 r^3 \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
</math>
 
 
::<math>={\mu I^2 \over 8 R^4 \pi^2} \cdot 1 \cdot 2\pi \cdot  \int_0^R r^3 \; \mathrm{d} r =
{\mu I^2 \over 4 R^4 \pi} \cdot  \left[ {r^4 \over 4} \right]_0^R=
{\mu I^2 \over 16 R^4 \pi} \cdot R^4 =
{\mu I^2 \over 16 \pi} = {\mu_0 \mu_r I^2 \over 16 \pi}
</math>


}}
}}
234. sor: 813. sor:
|szöveg=A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.
|szöveg=A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.


<math>\oint_L \vec{H} d \vec{l} = \int_S \vec{J} d\vec{A} = I</math>
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s} = I</math>
 
Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített A síkon csakis a vékony rézvezeték árama megy át.


Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített S síkon csakis a vékony rézvezeték árama megy át.


Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:


<math>H 2 d \pi = I \longrightarrow H = \frac{I}{2 d \pi}=\frac{5}{2 *0.03 \pi} \approx 26.53 {A \over m}</math>
<math>H 2 d \pi = I \longrightarrow H = \frac{I}{2 d \pi}=\frac{5}{2 \cdot 0.03 \pi} \approx 26.53 \;{A \over m}</math>
}}
 
=== 66. Feladat: Végtelen, egyenes vezető, és vezetőkeret kölcsönös induktivitása. ===
Egy a = 0.05m oldalhosszúságú négyzet hossztengelyétől d = 0.12m távolságban (tehát két oldalával párhuzamosan, kettőre pedig merőlegesen, a vezetőkeret fölött), egy végtelen hosszúságú, <math>I</math> áramot szállító vezeték halad. Határozza meg az egyenes vezető és a vezetőkeret közötti kölcsönös indukció együtthatót!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A vezetőkeret két oldala, amelyek a végtelen hosszú vezetővel párhuzamosak, azonos távol vannak a vezetőkerettől. Mivel a mágneses indukció körkörösen, a jobbkéz-szabály szerint fogja körül a vezetőt, ezért a két átellenes oldalban pont ellenkező előjelű feszültség indukálódik, így kinullázzák egymást. Tehát 0 lesz a kölcsönös indukció.
Kijön számítás alapján is.
 
}}
 
== Távvezetékek (TV) ==
 
 
=== 68. Feladat: Mindkét végén nyitott ideális távvezeték rezonancia frekvenciája ===
 
Melyik az a legkisebb frekvencia, amelyen rezonancia léphet fel egy mindkét végén nyitott, <math>l=5km</math> hosszúságú, ideális légszigetelésű távvezetéken?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Rezonancia akkor lép fel egy ideális távvezetéken, ha a távvezeték bemeneti impedanciájával megegyező nagyságú és fázisú impedanciával zárjuk le a távvezeték elejét.
 
Az ideális távvezeték bemeneti impedanciája könnyen számítható az ismert képlet alapján, ha a távvezeték lezárása szakadás:
 
<math>Z_{be}=Z_0 \cdot {Z_2 + jZ_0 \tan(\beta l)\over Z_0 + jZ_2 \tan(\beta l) } </math>
 
 
<math>Z_2 \rightarrow \infty</math>
 
 
<math>Z_{be} = \lim_{{Z_2}\to\infty} \left( Z_0 \cdot {Z_2 + jZ_0 \tan(\beta l)\over Z_0 + jZ_2 \tan(\beta l) }\right)=
-jZ_0 \cdot {1 \over \tan(\beta l)} </math>
 
 
Mivel a távvezeték elejének lezárása is szakadás, így annak az impedanciája is végtelen, tehát a rezonancia kialakulásához a bemeneti impedanciának is végtelennek kell lennie. Ez akkor állhat elő, ha a bemeneti impedancia kifejezésének nevezője nulla:
 
<math>-jZ_0 \cdot {1 \over \tan(\beta l)} = \infty \;\;\; \longleftrightarrow \;\;\; tan(\beta l)=0</math>
 
 
<math>\beta l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>
 
<math>k</math> azért csak pozitív egész szám lehet (képletszerűleg bármilyen egész szám jó lenne), mert ugye negatív frekvenciájú hullám nem létezik, valamint kérdéses, hogy a 0 frekvenciájú hullámot vagyis az egyengerjesztést elfogadjuk-e. Ha igen akkor ez a legkisebb frekvencia, ami teljesíti a feltételeket, ha nem akkor számolunk tovább:
 
 
<math>{2 \pi \over \lambda} \cdot l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>
 
 
<math>{2 \pi f\over c} \cdot l = k \cdot \pi \;\;\;\;\; k \in \mathbb{Z}^+</math>
 
 
<math> f = {k \cdot c\over 2l} \;\;\;\;\; k \in \mathbb{Z}^+</math>
 
 
<math>f_{min} = {1 \cdot c\over 2l} = {3 \cdot 10^8 \over 2 \cdot 5000} = 30 \; kHz</math>
 
 
A feladat más megközelítéssel is megoldható, bár szerintem az előbbi megoldás az egzaktabb, míg a második egy kicsit "fapadosabb", de kellően szép köntösben tálalva ez is tökéletes megoldás.
 
Emlékezzünk vissza, mit tanultunk a hullámjelenségekről: Rezonancia esetén olyan állóhullám alakul ki melyre igaz, hogy a szabad végeken (szakadás) maximumhelye, míg a rögzített végeken (rövidzár) csomópontja van.
 
Keressük meg azt a legnagyobb hullámhosszt (azaz legkisebb frekvenciát), ami kielégíti ezen feltételeket. Segítségül egy kis ábra amin vázolva van az első pár lehetséges eset:
 
[[File:Terek_szóbeli_feladatok_rezonancia_ábra.png]]
 
Erről nagyon szépen látszik, hogy a legnagyobb kialakulható hullámhossz a távvezeték hosszának kétszerese lehet. Tehát:
 
<math>\lambda_{max} = 2l \longrightarrow f_{min}={c \over \lambda_{max}} =
{c \over 2l} = {3 \cdot 10^8 \over 2 \cdot 5000} = 30 \; kHz  </math>
 
}}
 
=== 70. Feladat: Szakadással lezárt TV áram amplitúdó nagysága ===
Egy ideális légszigetelésű TV ismert hullámimpedanciája 500 Ohm. A távvezeték végén a szakadáson mért feszültség amplitúdója <math> U{_{2}}^{} = 180 V </math>. Mekkora a távvezeték végétől <math> x = 500 </math> méterre az áramerősség amplitúdója, ha tudjuk, hogy a frekvencia 1 MHz.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A megoldás menete: Ideális a TV és légszigetelésű ezért a <math> \beta = \frac{2\pi }{\lambda } </math> és mivel légszigetelésű a vezeték <math> \lambda = \frac{c}{f} </math>.
 
Felírjuk a Heimholtz egyenleteket a TV végére:
 
<math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{j\beta l} </math>
 
<math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{j\beta l} </math>
 
<math> l = 500m </math>
 
<math> r = 1 </math>
 
A reflexiós tényező a távvezeték végén:
 
<math> r = \frac{U_{2}^{-}}{U_{2}^{+}} = \frac{U^{-} * e^{j\beta l}}{U^{+} * e^{-j\beta l}} </math>
 
Ebből kifejezve <math> U^{-} = U^{+} * e^{-j2\beta l} </math>
 
Ezt visszaírva a Heimholtz megoldásába:
 
<math> U(z=l) = {U^{+}} * e^{-j\beta l} + U^{+} * e^{-j2\beta l}  = 180V </math>
 
Ebből ki tudjuk fejezni <math> U^{+}-t \;\; és \;\; U^{-}-t </math> Amit visszaírva az egyenletbe a további paramétereket megkapjuk az áram amplitúdóját.
 
}}
 
=== 72. Feladat: Lecher vezeték hullámimpedanciájának számítása ===
Egy ideális Lecher vezeték hullámimpedanciája kezdetben 400 ohm. Eltávolítjuk egymástól a vezetékpárt, ekkor a vezeték hosszegységre jutó soros impedanciája 1,5-szeresére nő. Mennyi lesz ekkor a vezeték hullámimpedanciája?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A megoldás menete: Mivel ideális a TV, a fázissebesség c, azaz a fénysebesség. Tudjuk, hogy <math>c = \frac{1}{\sqrt{L'\cdot C'}}</math>.
A hullámimpedancia pedig <math>Z_{0}  = \sqrt{\frac{L^{'}}{C^{'}}}</math>. Rendezgetéssel ezzel a két képlettel kijön.
 
}}
 
=== 73. Feladat: Ideális TV lezárásának számítása ===
 
Egy ideális távvezetek hullámimpedanciája <math>Z_{0}=50\Omega</math>. Az állóhullámarány <math>\sigma =3</math>, a TV lezárása egy ''R'' rezisztancia. ''R'' milyen értékeket vehet fel? Ha a lezárást kicseréljük egy ''C'' kondenzátorra, milyen értékűnek válasszuk, hogy az állóhullámarány megmaradjon? (<math>\omega = 10^{5} \frac{1}{s})</math>
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az állóhullámarány és a reflexiós tényező kapcsolata: <math>\sigma = \frac{1+\left | r \right |}{1-\left | r \right |} = 3</math>
 
Ebből  <math>\left | r \right | = \frac{1}{2} </math>, tehát <math>r = \pm \frac{1}{2}</math>
 
 
Tudjuk, hogy <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{R-Z_{0}}{R+Z_{0}}</math>, kifejezve ''R''-t, adódik, hogy: <math>R = \frac{Z_{0} + rZ_{0}}{1-r}</math>.
 
ha <math>r = \frac{1}{2}</math>, akkor <math>R = 16.67\Omega</math>.
 
ha <math>r = -\frac{1}{2}</math>, akkor <math>R = 150\Omega</math>.
 
 
Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le:
ez egy kedves becsapós kérdés, mert amennyiben <math>Z_{2} = \frac{1}{j\omega C}</math>, akkor <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{\frac{1}{j\omega C}-Z_{0}}{\frac{1}{j\omega C}+Z_{0}}</math>.
 
Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az <math>r =1</math>-et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor.
 
 
 
 
 
 
}}
}}


=== 78. Feladat: Ideális távvezeték állóhullámarányának számítása ===
=== 78. Feladat: Ideális távvezeték állóhullámarányának számítása ===
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az <math>U(z) = (3+4j)*e^{-j \beta z} + (2-j)*e^{j \beta z}</math> függvény szerint változik. Adja meg az állóhullámarányt!
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az <math>U(z) = (3+4j) \cdot e^{-j \beta z} + (2-j) \cdot e^{j \beta z}</math> függvény szerint változik. Adja meg az állóhullámarányt!
 
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad --> - j*béta*z ) és a reflektált (negatív irányba halad --> + j*béta*z ) komponenseinek komplex amplitúdói:
|szöveg=
A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad <math>\rightarrow - j \beta z </math> ) és a reflektált (negatív irányba halad <math>\rightarrow + j \beta z </math> ) komponenseinek komplex amplitúdói:


<math>U^+ = 3+4j</math>
<math>U^+ = 3+4j</math>
253. sor: 981. sor:
<math>U^- = 2-j</math>
<math>U^- = 2-j</math>


''Megjegyzés:'' A feladat megadható úgy is, hogy U(x) függvényt adják meg. Ekkor a beeső komponenshez (U2+) tartozik a pozitív, a reflektálthoz (U2-) pedig a negatív hatványkitevő!
''Megjegyzés:'' A feladat megadható úgy is, hogy <math>U(x)</math> függvényt adják meg. Ekkor a beeső komponenshez (<math>U_2^+</math>) tartozik a pozitív, a reflektálthoz (<math>U_2^-</math>) pedig a negatív hatványkitevő!
 


Kapcsolat a két fajta paraméterezés között:
Kapcsolat a két fajta paraméterezés között:
261. sor: 990. sor:
<math>U_2^- = U^- e^{ \gamma l} \xrightarrow{ idealis TV} U^- e^{ j \beta l} </math>
<math>U_2^- = U^- e^{ \gamma l} \xrightarrow{ idealis TV} U^- e^{ j \beta l} </math>


Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti "x" paraméterezéssel, majd ebből "z" szerinti paraméterezéssel:


<math>|r|=\left| {U_{reflektalt} \over U_{beeso}} \right|= \left| {U_2^- \over U_2^+ } \right|=\left| {U^- \over U^+ } e^{j2 \beta l}  \right| = \left| {U^- \over U^+ } \right| =\left| {2-j \over 3+4j } \right| = {1 \over \sqrt{5}} = 0.447</math>
Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti <math>x</math> paraméterezéssel, majd ebből <math>z</math> szerinti paraméterezéssel:
 
<math>|r|=\left| {U_{reflektalt} \over U_{beeso}} \right|= \left| {U_2^- \over U_2^+ } \right|=\left| {U^- \over U^+ } e^{j2 \beta l}  \right| = \left| {U^- \over U^+ } \right| =\left| {2-j \over 3+4j } \right| = {1 \over \sqrt{5}} \approx 0.447</math>
 


Ebből pedig már számolható a távvezeték állóhullámaránya:
Ebből pedig már számolható a távvezeték állóhullámaránya:
269. sor: 1 000. sor:
<math>\sigma = {1+|r] \over 1-|r| } = {1+0.447 \over 1-0.447 } \approx 2.62</math>
<math>\sigma = {1+|r] \over 1-|r| } = {1+0.447 \over 1-0.447 } \approx 2.62</math>


}}


}}
=== 81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása ===


=== 81. Feladat: Egyenfeszültséggel gerjesztett távvezeték megadott feszültségű pontjának meghatározása ===
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá.
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá.


283. sor: 1 014. sor:
Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:
Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:


<math>u(t,z)=|U^+|*e^{- \alpha z}*cos(\omega t - \beta z + \varphi^+)+|U^-|*e^{ \alpha z}*cos(\omega t + \beta z + \varphi^-)</math>
<math>u(t,z)=|U^+| \cdot e^{- \alpha z} \cdot \cos(\omega t - \beta z + \varphi^+) \;+\;
|U^-| \cdot e^{ \alpha z} \cdot \cos(\omega t + \beta z + \varphi^-)</math>
 


Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz <math>\omega =0</math>, ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát <math>\beta = 0</math>. Az egyenfeszültségből következik, hogy a <math>\varphi </math> kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.  
Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz <math>\omega =0</math>, ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát <math>\beta = 0</math>. Az egyenfeszültségből következik, hogy a <math>\varphi </math> kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.  
289. sor: 1 022. sor:
Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):
Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):


<math>u(t,z)=U_0*e^{- \alpha z}</math>
<math>u(t,z)=U_0 \cdot e^{- \alpha z}</math>
 


Ebből látszik, hogy a kialakuló hullámforma egy <math>U_0</math>-tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.  
Ebből látszik, hogy a kialakuló hullámforma egy <math>U_0</math>-tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.  
295. sor: 1 029. sor:
A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (<math>\alpha</math>), feltéve hogy <math>\omega =0</math>, hiszen egyenfeszültséggel gerjesztjük a távvezetéket:
A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (<math>\alpha</math>), feltéve hogy <math>\omega =0</math>, hiszen egyenfeszültséggel gerjesztjük a távvezetéket:


<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R'*G'} \right\}=\sqrt{R'*G'}=\sqrt{0.02*5*10^{-6}}=3.16*10^{-4}{1\over m}</math>
<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R' \cdot G'} \right\}=\sqrt{R' \cdot G'}=\sqrt{0.02 \cdot 5 \cdot 10^{-6}}=3.16 \cdot 10^{-4} \;{1\over m}</math>
 


Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:
Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:


<math>U_0*e^{-\alpha*z}={U_0 \over 2}</math>
<math>U_0 \cdot e^{-\alpha z}={U_0 \over 2}</math>


<math>e^{-\alpha*z}=0.5</math>
<math>e^{-\alpha z}=0.5</math>


<math>-\alpha*z=\ln 0.5 \longrightarrow z=-{\ln 0.5 \over \alpha}=-{\ln 0.5 \over 3.16*10^{-4}}=2.192 km</math>
<math>-\alpha z=\ln 0.5 \longrightarrow z=-{\ln 0.5 \over \alpha}=-{\ln 0.5 \over 3.16 \cdot 10^{-4}} \approx 2.192 \;km</math>
}}
}}


=== 82. Feladat: Ideális távvezeték bemeneti impedanciája ===
=== 82. Feladat: Ideális távvezeték bemeneti impedanciája ===


Egy ideális, légszigetelésű <math>l</math> hosszúságú, <math>Z_0</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = {l \over 8}</math>. Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy <math>L={Z_0 \over \omega}</math> induktivitású ideális tekercs?
Egy ideális, légszigetelésű <math>l</math> hosszúságú, <math>Z_0</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = 8l</math>
 
Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy <math>L={Z_0 \over \omega}</math> induktivitású ideális tekercs?


{{Rejtett
{{Rejtett
314. sor: 1 052. sor:
|szöveg=
|szöveg=


Tudjuk, hogy: <math>\beta = {2 \pi \over \lambda} \longrightarrow  (\beta l)={2 \pi \over \lambda}l ={2 \pi \over {l \over 8}}l = 16 \pi  </math>
Tudjuk, hogy: <math>\beta = {2 \pi \over \lambda} \longrightarrow  (\beta l)={2 \pi \over \lambda}l ={2 \pi \over 8l}l = {\pi \over 4} </math>
 


A lezáró tekercs impedanciája: <math>Z_2=j \omega L = j \omega {Z_0 \over \omega}=j Z_0</math>
A lezáró tekercs impedanciája: <math>Z_2=j \omega L = j \omega {Z_0 \over \omega}=j Z_0</math>


Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:
Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:
<math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } =
Z_0 {j Z_0 + j Z_0 tg\left({\pi \over 4}\right) \over Z_0 + j j Z_0 tg\left({\pi \over 4}\right) } =
j Z_0 {1 + tg\left({\pi \over 4}\right) \over 1 - tg\left({\pi \over 4}\right) } =
j Z_0 {1 + 1 \over 1 - 1 } =
j Z_0 \cdot {2 \over 0 } \longrightarrow \infty
</math>
A kapott eredményen nem kell meglepődni. Jelen paraméterek mellett a távvezeték bemeneti impedanciája végtelenül nagy.
}}
=== 83. Feladat: Ideális távvezeték meddő teljesítménye ===
Egy ideális, légszigetelésű <math>l=83.2m</math> hosszúságú, <math>Z_0 = 50\Omega</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = 75\;m</math>. A távvezeték bemenetére egy <math>U = 100V</math> amplitúdójú, <math>\omega</math> körfrekvenciájú feszültséggenerátort kapcsolunk, miközben szakadással zárjuk le a másik oldalt.
Mekkora a távvezeték által felvett meddő teljesítmény?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A távvezeték helyettesíthető egyetlen <math>Z_{be}</math> nagyságú impedanciával figyelembe véve azt, hogy a lezáró <math>Z_2</math> impedancia a szakadás miatt végtelen nagyságú.
<math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } \longrightarrow
{ Z_0 \over  j tg(\beta l)}
</math>
Ezzel a helyettesítéssel már egyszerűen számolható a kapcsolás komplex látszólagos teljesítménye:
<math>
S = {1 \over 2} U I^* =
{1 \over 2} U { \left( {U \over Z_{be}} \right) }^* =
{1 \over 2} |U|^2 { 1\over Z_{be}^*} =
{1 \over 2} |U|^2 {\left( { j tg(\beta l) \over Z_0} \right)}^* =
-j{1 \over 2} |U|^2 {tg(\beta l) \over Z_0} =
-j{1 \over 2} |U|^2 {tg({2 \pi \over \lambda}l) \over Z_0}
</math>
A távvezeték által felvett meddő teljesítmény a komplex látszólagos teljesítményének imaginárius részével egyezik meg:


<math>
<math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } = Z_0 {j Z_0 + j Z_0 tg(16 \pi) \over Z_0 + j j Z_0 tg(16 \pi) } = j Z_0 {1 + tg(16 \pi) \over 1 - tg(16 \pi) } = j Z_0 {1 + 0 \over 1 - 0 } = jZ_0
Q = Im \left\{ S \right\} =  
-{1 \over 2} |U|^2 {tg({2 \pi \over \lambda}l) \over Z_0} =
-{1 \over 2} \cdot 100^2 \cdot {tg({2 \pi \over 75}\cdot 83.2) \over 50} \approx -82.024 \; Var
</math>
</math>
}}
=== 85. Feladat: Távvezeték állóhullámaránya ===
Egy távvezeték hullámimpedanciája <math>500 \Omega </math>, a vezeték végén a feszültség és az áram amplitúdója 1kV és 2A. Mit mondhatunk a reflexiós tényezőről? Mekkora a távvezetéken az állóhullámarány lehető legkisebb értéke?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
<math>\frac{1 kV}{2 A} = 500 \Omega</math>. Ez csak az abszolút értéke az impedanciának (amplitúdók voltak csak adottak a fázisok nem). Ebből felírva a két szélső helyzetet(<math>Z_{2} = 500 \Omega </math> vagy <math>Z_{2} = j \cdot 500 \Omega </math>):
Adódik, hogy a reflexiós tényező abszolútértéke 1 és 0 között változik. Ebből pedig behelyettesítve az állóhullámarány képletébe látszik hogy az végtelen és egy között változik. Így annak lehető legkisebb értéke 1.


}}
}}
331. sor: 1 132. sor:
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow  (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>  
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow  (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>


Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:


<math>U_1 = cos (\beta l)*U_2 + j * sin(\beta l) * Z_0 * I_2 = cos \left( {\pi \over 4} \right)*500 + j * sin \left( {\pi \over 4} \right) * 50 * 2 \approx (354 + j70.7)V</math>
<math>U_1 = \cos (\beta l) \cdot U_2 \;+\; j \cdot \sin(\beta l) \cdot Z_0 \cdot I_2 =
\cos \left( {\pi \over 4} \right)\cdot500 \;+\; j \cdot \sin \left( {\pi \over 4} \right) \cdot 50 \cdot 2 \approx (354 + j70.7)V</math>
 
}}
}}


=== 87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével===
=== 87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével===


Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \Omega</math>, hossza pedig <math>\frac{\lambda}{3}</math>. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója <math>j150 V</math>.<br/>Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \; \Omega</math>, hossza pedig <math>\frac{\lambda}{3}</math>. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója <math>j150 \; V</math>.<br/>Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!


{{Rejtett
{{Rejtett
351. sor: 1 156. sor:
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:


<math>I_1 = j*{1 \over Z_0}*sin(\beta l)*U_2 + cos(\beta l)*I_2 = j*{1 \over 50}*sin\left( \frac{2\pi}{3} \right) *j150 + cos\left( \frac{2\pi}{3} \right)*0=-3*sin\left( \frac{2\pi}{3} \right) \approx -2.6 A </math>
<math>I_1 = j \cdot {1 \over Z_0} \cdot \sin (\beta l) \cdot U_2 \;+\; \cos (\beta l) \cdot I_2 =
j \cdot {1 \over 50} \cdot \sin \left( \frac{2\pi}{3} \right) \cdot j150 \;+\; \cos \left( \frac{2\pi}{3} \right)\cdot 0 =
-3 \cdot \sin \left( \frac{2\pi}{3} \right) \approx -2.6 \; A </math>
 
}}
 
 
=== 88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye ===
 
Egy ideális távvezeték hullámimpedanciája <math>Z_0 = 400 \; \Omega</math>, lezárása pedig egy <math>Z_2 = -j400 \; \Omega</math> reaktanciájú kondenzátor. A távvezeték fázisegyütthatója <math>\beta = 0.2 \; {1 \over m} </math>.
 
Adja meg a bemeneti impedanciát a lezárástól való <math>x</math> távolság függvényében.
Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A bemeneti impedancia a hely függvényében egyszerűen megadható, ha az ideális távvezeték bemeneti impedanciájának általános képletében az <math>l</math> hossz helyébe általánosan <math>x</math> változót írunk, ahol <math>x</math> a lezárástól való távolságot jelöli.
 
''Megjegyzés:'' Arra az esetre, ha mégis rákérdeznének, hogy ez mégis honnan jött, célszerű lehet átnézni a jegyzetből az ideális távvezeték lánckarakterisztikájának levezetését, csak l helyébe x-et kell írni és ugyanazzal a gondolatmenettel levezethető ez a képlet.
 
<math>Z_{be}(x) = Z_0 \cdot {Z_2 + j Z_0 tg \left( \beta x \right)  \over Z_0 + jZ_2 tg \left( \beta x \right)}</math>
 
 
A bemeneti impedancia csakis akkor lehet 0, ha a fenti képletben a számláló is szintén 0.
 
<math>Z_2 + jZ_0 tg \left( \beta x \right) = 0 </math>
 
 
<math>-j400 + j400 tg \left( 0.2 \cdot x \right) = 0 </math>
 
 
<math>tg \left( 0.2 \cdot x \right) = 1 </math>
 
 
::::<math>\updownarrow</math>
 
 
<math>0.2 \cdot x = {\pi \over 4} + k \cdot \pi</math>
 
<math>x = 1.25\pi + k \cdot 5\pi \;\;\;\; \left[ m \right] </math>


}}
}}
== Indukálási jelenségek ==


=== 94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke ===
=== 94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke ===


Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\Phi(t)=30*sin(\omega t) mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\Phi(t)=30 \cdot \sin(\omega t) \;mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=Az indukálási törvény alapján: <math>u_i=-{d\Phi(t) \over dt}=-\omega*0.03*cos(\omega t)</math>
|szöveg=Az indukálási törvény alapján:
 
<math>u_i(t)=-{d\Phi(t) \over dt}=-\omega \cdot 0.03 \cdot \cos(\omega t) =-30 \cdot \cos(\omega t) \;V</math>
 
 
Innen a feszültség effektív értéke:


Behelyettesítve a körfrekvencia értékét: <math>u_i=-30*cos(\omega t) V</math>
<math>U_{eff}={30 \over \sqrt 2} \approx 21.21 \;V</math>


Innen a feszültség effektív értéke: <math>U_{eff}={30 \over \sqrt 2} V</math>


Az áram effektív értéke pedig: <math> I_{eff}={U_{eff} \over R}={6 \over \sqrt 2} A</math>
Az áram effektív értéke pedig:
 
<math> I_{eff}={U_{eff} \over R}= {{30 \over \sqrt{2}} \over 5} = {6 \over \sqrt 2} \approx 4.24 \;A</math>
}}
}}


=== 95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye ===
=== 95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye ===


Adott egy <math>R</math> ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: <math>\Phi (t) = \Phi_0 + \Phi_1 *sin(\omega t)</math>. Adja meg a a gyűrűben indukált áram <math>i(t)</math> időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.
Adott egy <math>R</math> ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: <math>\Phi (t) = \Phi_0 + \Phi_1 \cdot \sin(\omega t)</math>.
 
Adja meg a a gyűrűben indukált áram <math>i(t)</math> időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.


Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.
Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.
381. sor: 1 239. sor:
Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel:   
Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel:   


<math>u_i(t)={d\Phi(t) \over dt}= \Phi_1* \omega * cos(\omega t)</math>
<math>u_i(t)={d\Phi(t) \over dt}= \Phi_1 \cdot \omega \cdot \cos(\omega t)</math>


Ebből az áram időfüggvénye: <math>R={U \over I} \longrightarrow i(t)={u_i(t) \over R}={\Phi_1 \over R}* \omega * cos(\omega t)</math>
Ebből az áram időfüggvénye: <math>R={U \over I} \longrightarrow i(t)={u_i(t) \over R}={\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.
Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.
389. sor: 1 247. sor:
Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.
Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.


Az indukált áram időfüggvénye tehát: <math>i(t)=-{\Phi_1 \over R}* \omega * cos(\omega t)</math>
Az indukált áram időfüggvénye tehát: <math>i(t)=-{\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


}}
}}


=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===
=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===
Az xy síkon helyezkedik el egy <math>r=3m</math> sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense <math>\Delta=40ms</math> idő alatt <math>B=0.8T</math> értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?
 
Az xy síkon helyezkedik el egy <math>r=3m</math> sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense <math>\Delta t=40ms</math> idő alatt <math>B=0.8T</math> értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az indukálási törvény alapján:
 
<math>u_i=-{d\Phi(t) \over dt}=-A \cdot { dB(t) \over dt}=
-r^2\pi \cdot { \Delta B\over \Delta t}=-r^2\pi \cdot {B_2-B_1\over\Delta t}=
- 3^2\pi \cdot {0-0.8\over0.04}=565.5 \;V </math>
 
}}
 
 
=== 99. Feladat: Zárt vezetőhurokban disszipálódó összes energia ===
 
R ellenállású zárt vezetőkeret fluxusa <math>0 < t < T</math> intervallumban ismert <math>\Phi(t)</math> szerint változik. Fejezze ki az intervallumban a keretben disszipálódó összes energiát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az indukálási törvény alapján:
 
<math>u_i=-{d\Phi(t) \over dt}</math>
 
Továbbá:
 
<math> P = { U^2 \over R } </math>
 
Ezt integrálni kell 0-tól T-ig, 1/T előtaggal.
 
(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)
 
(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó)
 
}}
 
=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
 
Egy hosszú egyenes vezetőtől <math>d=15 m</math> távolságban egy <math>r=0,25 m</math> sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.
 
Mekkora az indukált feszültség, ha a vezetőben folyó áram <math>50 {A \over \mu s}</math> sebességgel változik.


{{Rejtett
{{Rejtett
400. sor: 1 303. sor:
|szöveg=
|szöveg=


Az indukálási törvény alapján: <math>u_i=-{d\Phi(t) \over dt}=-A*{ dB(t) \over dt}=-r^2\pi*{ \bigtriangleup B\over \bigtriangleup t}=-r^2\pi*{B_2-B_1\over\bigtriangleup t}=- 3^2\pi*{0-0.8\over0.04}=565.5 V </math>
Az indukálási törvény alapján:
 
<math>u_i=-{\mathrm{d}\Phi(t) \over \mathrm{d} t}=-A \cdot { \mathrm{d}B(t) \over \mathrm{d} t}=
-A \mu_0 \cdot { \mathrm{d}H(t) \over \mathrm{d} t}</math>
 
A hosszú egyenes áramjárta vezető környezetében a mágneses térerősségvektor az Ampere-féle gerjesztési törvénnyel meghatározható. Ha a mágneses térerősséget egy <math>d</math> sugarú zárt <math>L</math> kör mentén integrálunk, amely által kifeszített <math>A</math> területű körlapot a közepén merőlegesen döfi át a vezeték, akkor a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
 
<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>
 
<math>H \cdot 2d\pi = I \longrightarrow H = {I \over 2d\pi}</math>
 
 
Ezt behelyettesítve az indukált feszültség képletébe:
 
<math>u_i=-A \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- r^2 \pi \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {r^2 \mu_0 \over 2d} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {0.25^2 \cdot 4\pi \cdot 10^{-7} \over 2 \cdot 15} \cdot 50 \cdot 10^6 \approx -130.9 \; mV
</math>
 
 
''Megjegyzés:'' Természetesen ez csak egy jó közelítés, hiszen a vezető keret mentén nem állandó nagyságú a mágneses térerősség változása, mivel az függ a vezetőtől való távolságtól is. Azonban a közepes távolságot véve, csak kismértékű hibát vétünk.
 


}}
}}


=== 101. Feladat: Zárt vezetőhurokban indukált feszültség===
=== 101. Feladat: Zárt vezetőhurokban indukált feszültség===


Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: <math>\Phi(t)=\Phi_0*{t^2 \over T}</math>, ha <math>0<t<T</math>. Mekkora lesz az indukált feszültség nagysága amikor <math>t=T/3</math>?
Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: <math>\Phi(t)=\Phi_0 \cdot {t^2 \over T}, \;\; ha \;\;0<t<T</math>.
 
Mekkora lesz az indukált feszültség nagysága amikor <math>t=T/3</math>?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az indukálási törvény alapján:
 
<math>u_i(t)=-{d \Phi(t) \over dt}= -{2 \Phi_0 \over T} \cdot  t</math>
 
 
Behelyettesítve a <math>t=T/3</math> értéket:
 
<math>u_i\left(t= {T \over 3} \right)= -{2 \Phi_0 \over T} \cdot {T \over 3}=-{2\over 3} \Phi_0</math>
 
}}
 
 
== Elektromágneses síkhullám jó vezetőben ==
 
 
=== 105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa ===
 
Egy <math>r</math> sugarú hengeres vezető anyagban a behatolási mélység <math>\delta<<r</math>. A henger felszínén az elektromos térerősség amplitúdója <math>E_0</math>, kezdőfázisa pedig <math>0 \; rad</math>.
 
A felszíntől <math>h</math> távolságban térerősség amplitúdója <math>{E_0 \over 2}</math>. Mennyi ilyenkor a fázisa a térerősségnek?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy a hogy vezető anyagokban az elektromos térerősség komplex amplitúdója a mélység (z) függvényében:
 
<math>E(z) = E_0 \cdot e^{- \gamma z}</math>
 
 
<math>\gamma = {1+j \over \delta}  \longrightarrow E(z) = E_0 \cdot e^{-z/\delta} \cdot e^{-jz/\delta}</math>
 
Ebből a képletből kifejezhető az elektromos térerősség komplex amplitúdójának nagysága (abszolút értéke):
 
<math>\left| E(z) \right|=  E_0 \cdot e^{-z/\delta}</math>
 
Behelyettesítve a megadott adatokat:
 
<math>\left| E(h) \right| =  E_0 \cdot e^{-h/\delta} = {E_0 \over 2}</math>
 
<math>-{h \over \delta} = ln(0.5)</math>
 
Most fejezzük ki a fentebbi képletből az elektromos térerősség komplex amplitúdójának fázisát:
 
<math>arg \left\{ E(z) \right\} = -{z \over \delta}</math>
 
Behelyettesítve a megadott adatokat, majd az imént kiszámolt <math>-{h \over \delta}</math> arányt:
 
<math> arg \left\{ E(h) \right\} = - {h \over \delta} = - ln(0.5) \approx 0.693 \; rad </math>
 
 
}}
 
 
=== 106. Feladat:  Koaxiális kábel váltóáramú ellenállása ===
 
Egy koaxiális kábel magjának sugara <math>r_1 = 2mm</math>, a köpenyének belső sugara <math>r_2 = 6 mm</math>, a külső sugara pedig <math>r_3 = 7 mm</math>. A mag és a köpeny vezetőképessége egyaránt <math>\sigma = 57 MS</math>. A behatolási mélység a kábelre kapcsolt generátor frekvenciáján <math>\delta = 102 \mu m</math>.
 
Adja meg az elrendezés hosszegységre eső váltóáramú ellenállását.


{{Rejtett
{{Rejtett
412. sor: 1 404. sor:
|szöveg=
|szöveg=


Az indukálási törvény alapján: <math>u_i(t)=-{d \Phi(t) \over dt}= -{2 \Phi_0 \over T} *t</math>
A koaxiális kábel erővonalképe:
 
[[File:Terek_106_Feladat.PNG | 300px ]]
 
Az elektromos térerősség mind a magban, mind pedig a köpenyben <math>e^{- z / \delta }</math> függvény szerint csökken.
 
Mivel a behatolási mélység nagyságrenddel kisebb, mint a kábel méretei, így ellenállás szempontjából olyan, mintha csak egy-egy <math>\delta</math> vastagságú keresztmetszeten folyna egyenáram mind a magban, mind pedig a köpenyben. Az eredő váltóáramú ellenállás pedig ezen két egyenáramú ellenállás összege:
 
<math>
R_{AC} = R_{DC,m} + R_{DC,k} =
{1 \over \sigma} { l \over A_1 } + {1 \over \sigma} { l \over A_2 } \approx
{1 \over \sigma} { l \over 2 r_1 \pi \delta } + {1 \over \sigma} { l \over 2 r_2 \pi \delta } =
{l \over \sigma \cdot 2 \pi \delta} \left( { 1 \over r_1 } + { 1 \over r_2 } \right)
</math>


Behelyettesítve a <math>t=T/3</math> értéket: <math>u_i\left( {T \over 3} \right)= -{2 \Phi_0 \over T} *{T \over 3}=-{2\over 3} \Phi_0</math>
 
Ebből a hosszegységre eső váltóáramú ellenállás:
 
<math>
R_{AC,l} = {1 \over \sigma \cdot 2 \pi \delta} \cdot \left( { 1 \over r_1 } + { 1 \over r_2 } \right) =
{1 \over 57 \cdot 10^6 \cdot 2 \pi \cdot 102 \cdot 10^{-6}} \cdot \left( { 1 \over 0.002 } + { 1 \over 0.006 } \right) =
18.25 \; m\Omega
</math>


}}
}}


=== 107. Feladat: Hengeres vezetőben disszipált hőteljesítmény ===
=== 107. Feladat: Hengeres vezetőben disszipált hőteljesítmény ===
Egy <math>A=1.5 mm^2</math> keresztmetszetű, <math>l=3m</math> hosszú hengeres vezetőben <math>I=10A</math> amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység <math> \delta = 9.7 mm</math>, a fajlagos vezetőképesség pedig <math> \sigma = 3.7*10^7 {S \over m}</math>. Mennyi a vezetőben disszipált hőteljesítmény?
Egy <math>A=1.5 mm^2</math> keresztmetszetű, <math>l=3m</math> hosszú hengeres vezetőben <math>I=10A</math> amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység <math> \delta = 9.7 mm</math>, a fajlagos vezetőképesség pedig <math> \sigma = 3.7 \cdot 10^7 {S \over m}</math>. Mennyi a vezetőben disszipált hőteljesítmény?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
426. sor: 1 438. sor:
Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima <math>l</math> hosszúságú, <math>A</math> keresztmetszetű és <math> \sigma</math> fajlagos vezetőképességű vezetékdarabnak.
Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima <math>l</math> hosszúságú, <math>A</math> keresztmetszetű és <math> \sigma</math> fajlagos vezetőképességű vezetékdarabnak.


<math>R={1 \over \sigma}{l \over A}={1 \over 3.7*10^{7}}*{3 \over 1.5*10^{-6}}=54m\Omega</math>
<math>R={1 \over \sigma}{l \over A}={1 \over 3.7 \cdot 10^{7}} \cdot {3 \over 1.5 \cdot 10^{-6}} \approx 54 \;m\Omega</math>


A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):
A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):


<math>P={1\over2}RI^2={1\over2}*0.054*10^2=2.7W</math>
<math>P={1\over2}RI^2={1\over2} \cdot 0.054 \cdot 10^2 \approx 2.7 \;W</math>


}}
}}


=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
Egy <math>r=2mm</math> sugarú, hosszú hengeres vezető <math>\sigma=35 {MS \over m}</math> fajlagos vezetőképességű anyagból van, a behatolási mélység <math>\delta =80 \mu m</math>. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10*cos(\omega t)*\vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Egy <math>r=2mm</math> sugarú, hosszú hengeres vezető <math>\sigma=35 {MS \over m}</math> fajlagos vezetőképességű anyagból van, a behatolási mélység <math>\delta =80 \mu m</math>. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10 \cdot \cos(\omega t) \cdot \vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
{{Rejtett
{{Rejtett
441. sor: 1 454. sor:
|szöveg=
|szöveg=
Mivel: <math>\delta << r </math>
Mivel: <math>\delta << r </math>


Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:
Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:
<math>E(z)=E_0*e^{-\gamma z}=E_0*e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0*e^{-z/ \delta}*e^{-jz/ \delta}</math>


A differenciális Ohm-törvény: <math>\vec{J}=\sigma * \vec{E }</math>
<math>E(z)=E_0 \cdot e^{-\gamma z}=
E_0 \cdot e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta}</math>
 
 
A differenciális Ohm-törvény: <math>\vec{J}=\sigma \cdot \vec{E }</math>
 
 
Ezeket egybefésülve és áttérve időtartományba:
 
<math>\vec{J}(z,t)=Re \left\{  \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta} \cdot  e^{j \omega t} \right\} \cdot \vec{n}_0 = \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot \cos \left( \omega t - {z \over \delta} \right) \cdot \vec{n}_0 </math>
 


Ezeket egybefésülve és áttérve időtartományba: <math>\vec{J}(z,t)=Re \left\{  \sigma * E_0*e^{-z/ \delta}*e^{-jz/ \delta} *e^{j \omega t} \right\} * \vec{n}_0 = \sigma *E_0 * e^{-z/ \delta} * cos \left( \omega t - {z \over \delta} \right) * \vec{n}_0 </math>
Behelyettesítés után, <math>z= 2 \delta</math> mélységben:


Behelyettesítés után <math>z= 2 \delta</math> mélységben: <math>\vec{J}(t)= 35*10^6 * 10 * e^{-2 \delta / \delta} * cos \left( \omega t - {2 \delta \over \delta} \right) * \vec{n}_0 = 47.37 * cos \left( \omega t - 2 \right) * \vec{n}_0 {MA \over m^2}</math>
<math>\vec{J}(t)= 35 \cdot 10^6 \cdot 10 \cdot e^{-2 \delta / \delta} \cdot \cos \left( \omega t - {2 \delta \over \delta} \right) \cdot \vec{n}_0 = 47.37 \cdot \cos \left( \omega t - 2 \right) \cdot \vec{n}_0 \;{MA \over m^2}</math>


}}
}}


===111. Feladat: Behatolási mélység===
===111. Feladat: Behatolási mélység===
488. sor: 1 512. sor:


<math> \alpha = \beta = \frac{1}{\delta} \approx 231\ \frac{1}{\text{m}}</math>
<math> \alpha = \beta = \frac{1}{\delta} \approx 231\ \frac{1}{\text{m}}</math>
}}
===112. Feladat: Vezető közeg hullámimpedanciája===
Egy <math>\mu_r=1</math> relatív permeabilitású vezetőben <math> \omega = 10^4 {1 \over s}</math> körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami <math> \left| \gamma \right| = 5 \; {1 \over mm}</math>.
Mi a hullámimpedancia abszolút értéke?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Tudjuk, hogy a terjedési együttható: <math>\gamma = \sqrt{ j \omega \mu \cdot \left( \sigma + j \omega \varepsilon \right) }</math>
Mivel a közeg jó vezető és relatíve alacsony körfrekvenciájú a síkhullám, így: <math> \sigma >> \omega \varepsilon </math>
A terjedési együttható, így egyszerűsíthető:
<math> \gamma = \sqrt{ j \omega \mu \sigma } =
\sqrt{ j} \cdot \sqrt{ \omega \mu \sigma } =
{ 1 + j \over \sqrt{2} } \cdot \sqrt{ \omega \mu \sigma }</math>
Mivel ismerjük a terjedési együttható abszolút értékét, ebből a képletből kifejezhető a közeg fajlagos vezetőképessége:
<math>\left| \gamma \right| =
\left| { 1 + j \over \sqrt{2} } \right| \cdot \sqrt{ \omega \mu \sigma }=
\sqrt{ \omega \mu \sigma } \longrightarrow
\sigma = { {\left| \gamma \right| }^2 \over \mu \omega}</math>
A hullámimpedancia képlete szintén egyszerűsíthető, figyelembe véve, hogy vezető közeg esetén:  <math> \sigma >> \omega \varepsilon </math>
<math>Z_0 = \sqrt{{ j \omega \mu \over \sigma + j \omega \varepsilon }} \approx
\sqrt{{ j \omega \mu \over \sigma}} =
\sqrt{{ j \omega \mu \over { {\left| \gamma \right| }^2 \over \mu \omega}}}=
\sqrt{j} \cdot {\omega \mu \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {\omega \mu_0 \mu_r \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {10^4 \cdot 4\pi \cdot 10^{-7} \cdot 1 \over 5 \cdot 10^3} \approx
2.513 \; \cdot \; e^{j \cdot (\pi / 2)} \; \mu \Omega </math>
}}
=== 114. Feladat: Teljesítményváltozás ===
Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!
=== 116. Disszipált teljesítmény alumíniumvezetőben ===
Egy hengeres <math> r = 2mm </math> sugarú és <math> L = 8m </math> hosszúságú alumínium vezetőben <math> I = 3A </math> amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység <math> \delta = 60 \mu m </math> , határozza meg a vezető által disszipált teljesítményt, ha <math> \sigma = 35*10^6 S/m </math>!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Mivel a vizsgáztatóm azt mondta a megoldásomra, hogy rossz. de közben áttértünk a tételre, nem írnék le rossz megoldást.
}}
}}


=== 119. Feladat: Hullámimpedancia számítása ===
== Elektromágneses hullám szigetelőben==


Egy adott <math>\mu_r=5</math> relatív permeabilitású közegben síkhullám terjed <math>\omega = 10 {Mrad \over s}</math> körfrekvenciával. A terjedési együttható értéke: <math>\gamma = j0.1 {1 \over mm}</math><br /> Adja meg a közeg hullámellenállásának értékét!
=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
 
Egy adott <math>\mu_r=5</math> relatív permeabilitású közegben síkhullám terjed <math>\omega = 10 {Mrad \over s}</math> körfrekvenciával. A terjedési együttható értéke: <math>\gamma = 0.1 \cdot j \;{1 \over m}</math><br /> Adja meg a közeg hullámellenállásának értékét!


{{Rejtett
{{Rejtett
501. sor: 1 583. sor:
<math> Z_0 = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \varepsilon }} </math>
<math> Z_0 = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \varepsilon }} </math>


<math> \gamma = \sqrt{j \omega \mu * (\sigma +j \omega \varepsilon) } </math>
<math> \gamma = \sqrt{j \omega \mu \cdot (\sigma +j \omega \varepsilon) } </math>




515. sor: 1 597. sor:




<math> Z_0 = \frac{j \omega \mu}{\gamma} = {j 10^7 * 5 * 4 \pi * 10^{-7}  \over j 10^2}=0.628 \Omega</math>
<math> Z_0 = \frac{j \omega \mu}{\gamma} = {j 10^7 \cdot 5 \cdot 4 \pi \cdot 10^{-7}  \over j 0.1}=628.3 \;\Omega</math>
 
Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math>
 
}}
=== 120. Feladat: Felületen átáramló hatásos teljesítmény számítása ===
 
Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldás ismeretlen.
 
}}
 
=== 121. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
 
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
 
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
 
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
 
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
 
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
 
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>
 
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
 
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
 
 
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
 
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
 
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
 
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
 
}}
 
 
 
=== 125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, ideális szigetelő közeg határfelületére.<br/>A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója <math>H=0.3 \; {A \over m}</math>.
 
Adja meg a határfelület <math>3 \; m^2</math> nagyságú felületén átáramló hatásos teljesítmény!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
 
<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} </math>
 
Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
 
<math>P=Re \left\{ {S} \right\} \cdot A</math>
 
 
A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos mind a mágneses térerősség amplitúdója.
 
Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
 
 
<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
 
 
Felhasználva, hogy a szigetelőben <math>E = H \cdot Z_{0}' </math>, majd rendezve az egyenletet:
 
 
<math>P= {1 \over 2} \cdot H  \cdot \left( H \cdot Z_{0}' \right)  \cdot A =
{1 \over 2} \cdot H^2 \cdot Z_{0}'  \cdot A = {1 \over 2} \cdot 0.3^2 \cdot 200  \cdot 3 = 27 \; W
</math>
 
}}
 
=== 126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy <math>A=2m^2</math> nagyságú felületén disszipálódó hatásos teljesítmény <math>P=10W</math>. Mekkora az elektromos térerősség amplitúdója a szigetelőben?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
 
<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} </math>
 
 
Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
 
<math>P=Re \left\{ {S} \right\} \cdot A</math>
 
 
A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos, mind a mágneses térerősség amplitúdója.
 
Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
 
<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
 
Felhasználva, hogy a szigetelőben <math>H = {E \over Z_{0}'} </math>, majd rendezve az egyenletet:
 
 
<math>P= {1 \over 2} \cdot E \cdot {E \over Z_{0}' } \cdot A =
{E^2 \over 2 \cdot Z_{0}' } \cdot A \longrightarrow E =
\sqrt{{2PZ_{0}' \over  A} } = \sqrt{{2 \cdot 10 \cdot 200 \over  2} } \approx 44.72 \;{V \over m} </math>
 
}}
 
=== 129. Feladat: Elektromágneses síkhullám közeghatáron ===
 
<math>\varepsilon_r = 2.25</math> relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.<br/>A határfelületen az elektromos térerősség amplitúdója <math>E=250\; {V \over m}</math>.
 
Adja meg a <math>H^+</math> értékét a közeghatáron, az első közegben.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A megoldás során a távvezeték analógiát fogjuk felhasználni.
 
Először meg kell határoznunk a szigetelő reflexiós tényezőjét, ha a "lezárás" levegő:
 
<math>r={Z_{0,l} - Z_{0,sz} \over Z_{0,l} + Z_{0,sz}}=
{Z_{0,l} - Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }\over Z_{0,l} + Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }}=
{\sqrt{\varepsilon_r} - 1 \over \sqrt{\varepsilon_r} +1}=
{\sqrt{2.25} -1 \over \sqrt{2.25} +1} = 0.2 </math>
 
 
A folytonossági feltételből következik, hogy a határfelületen az elektromos térerősség amplitúdója nem változhat meg:
 
<math>E^+_l = E^+_{sz} + E^-_{sz} = E^+_{sz} \cdot (1+r)</math>
 
<math>H^+_{sz} = {E^+_{sz} \over Z_{0,sz}} \longrightarrow E^+_{sz} = H^+_{sz} \cdot Z_{0,sz}</math>
 
<math>E^+_l = H^+_{sz} \cdot Z_{0,sz} \cdot (1+r) \longrightarrow
H^+_{sz} = {E^+_l \over Z_{0,sz} \cdot (1+r)}=
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
}}
 
=== 130. Feladat: Elektromágneses síkhullám ideális szigetelőben ===
Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: <math>E(x,t) = 100 \cdot \cos(1.1t - 7.5x) \cdot e_x \frac{V}{m}</math>.
Az idő mértékegysége <math>\mu s</math>, a távolságé <math>km</math>.
 
Határozza meg a közeg dielektromos állandóját!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A térerősség általános időfüggvénye: <math>E(x,t) = E_0 \cdot \cos(\omega t - \beta x) \cdot e_x</math>.
 
Ebből látszik, hogy jelen feladatban <math>\omega = 1.1 \frac{Mrad}{s} </math> és <math>\beta = 7.5 \frac{1}{km}</math>.
Tudjuk azt is, hogy <math> v_f = \frac{c}{\sqrt \varepsilon_r} = \frac{\omega}{\beta}</math>. Átrendezve: <math>\varepsilon_r = (\frac{\beta}{\omega} \cdot c)^2 = (\frac{7.5 \cdot 10^-3}{1.1 \cdot 10^6} \cdot 3 \cdot 10^8)^2 = 4.18 </math>.
}}
 
=== 134. Feladat: Elektromágneses síkhullám szigetelő határfelületén ===
Levegőben terjedő síkhullám merőlegesen esik egy 200 <math>\Omega</math> hullámimpedanciájú ideális szigetelővel kitöltött végtelen féltér határfelületére. Mekkora a levegőben az elektromos térerősség maximális amplitúdója, ha a minimális amplitúdó levegőben 80 <math>{V \over m}</math>?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Először a reflexiós tényezőt kell kiszámítani ahol <math> Z_0=377\Omega Z_2=200\Omega </math> <math>  r={Z_2 - Z_0 \over Z_2 + Z_0}\approx 0,3 </math>.
 
A reflexiós tényezőből ki tudjuk számolni az állóhullámarányt.
 
<math> SWR= {1+|r| \over 1-|r|} \approx 1,86 </math>
(Ell.: 1 és <math>\infty</math> között van.)
SWR=<math> { |U_{max}| \over |U_{min}| } \Rightarrow |U_{max}|=|U_{min}|*SWR=80*1,86=148,8  {V \over m} </math>
}}
 
=== 135. Feladat: Elektromágneses síkhullám által gerjesztett áramsűrűség ===
Egy levegőben terjedő síkhullám merőlegesen esik egy végtelen kiterjedésű fémsík felületére. A síktól <math>\lambda \over 8</math> távolságra az elektromos térerősség komplex amplitúdója <math>500 {{V} \over {m}}</math>. Számítsa ki a felületi áramsűrűség nagyságát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A távvezeték analógiát felhasználva a lezárás rövidzár, így <math>r = -1</math>.
 
<math>E_2(h) = {E^+_2} \cdot {e^{j \beta (h-z)}} + {r} \cdot {{E^+_2} \cdot {e^{-j \beta (h-z)}}}</math>
 
<math>{\beta = {{2 \pi} \over {\lambda}}} \Rightarrow  E_2({{\lambda} \over {8}}) = {E^+_2} \cdot {e^{j {{ \pi } \over {4}}}} - {E^+_2} \cdot {e^{-j {{ \pi } \over {4}}}} = E^+_2 \cdot {\sqrt{2}j}</math>
 
<math>E^+_2 = {{500 {{V}\over{m}}} \over {\sqrt{2}j}} = -353.55i {{V} \over {m}}</math>
 
<math>|H^+_2| = {{|E^+_2|}\over{120\pi}} = 0.9378 {{A}\over{m}}</math>
 
 
 
Mivel vezetőben <math>H_{1t} = 0</math> és <math>H_{2t} - H_{1t} = K</math> azaz <math>n \times H_2 = K</math>
 
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
}}
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása ===
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.
 
Tehát:
 
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math>
 
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math>
 
//Bilicz azt mondta kell a Hx-hez egy negatív előjel
}}
 
== Poynting-vektor ==
 
 
=== 137. Feladat:  Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása===
 
Levegőben síkhullám terjed a pozitív <math>z</math> irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga <math>w = 9 \; {\mu J \over m^3}</math>.
 
Adja meg a Poynting-vektor időbeli átlagát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A Poynting-vektor időbeli átlaga felírható az energiasűrűség időbeli átlagának és a fénysebességnek a szorzataként:
 
<math>S = w \cdot c \approx
9 \cdot 10^{-6} \; {J \over m^3} \cdot 3 \cdot 10^8 \; {m \over s} =
2.7 \; {kW \over m^2}</math>
 
 
Másik megoldás, ha valaki esetleg nem ismerné a fenti magic képletet:
 
Az elektromos energiasűrűség időbeli átlaga levegőben definíció szerint felírható az alábbi módon:
 
<math>w = {1 \over 2} \varepsilon_0 E_{x0}^2 \; \longrightarrow \; E_{x0} =
\sqrt{{ 2w \over \varepsilon_0}} =
\sqrt{{ 2 \cdot 9 \cdot 10^{-6} \over 8.85 \cdot 10^{-12}}} \approx 1426.15 \; {V \over m}</math>
 
 
A levegő hullámimpedanciája: <math>Z_0 = 120\pi \; \Omega</math>
 
 
Ebből a Poynting-vektor időbeli átlaga már definíció szerint felírható:
 
<math>S = {1 \over 2} {E_{x0}^2 \over Z_0} =
{1 \over 2 } \cdot {1426.15^2 \over 120\pi} \approx 2.697 \; {kW \over m^2 }</math>


Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy μ = μ<sub>0</sub>*μ<sub>r</sub>
}}


=== 142. Feladat: Hertz-dipólus távoltérben ===
Levegőben álló Hertz-dipólus távolterében az elektromos térerősség amplitúdója az antennától r távolságban, az antenna tengelyétől mért <math>\vartheta </math> elevációs szög alatt <math>E(r, \vartheta)={200V \over r} \cdot sin\vartheta</math>. Adja meg az antenna által kisugárzott összes hatásos teljesítményt! <math>(D=1,5)</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Hertz-dipólus távoltérben
}}
}}


557. sor: 1 905. sor:
</math>
</math>
}}
}}


=== 149. Feladat: Koaxiális kábelben áramló teljesítmény ===
=== 149. Feladat: Koaxiális kábelben áramló teljesítmény ===


Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:<br\><math>E(r)=\frac{U_0}{r}*\vec{e_r}</math> (ahol <math>\vec{e_r}</math> a radiális irányú egységvektor),
Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:
<br\><math>H(r)=\frac{I_0}{r}*\vec{e_\varphi}</math> (ahol <math>\vec{e_\varphi}</math> a fi irányú egységvektor).<br\>
 
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r<sub>1</sub>, a külső vezető belső sugara r<sub>2</sub>, a vezetők ideálisak, a kábel tengelye a z irányú.
<math>\vec{E}(r)=\frac{U_0}{r} \cdot \vec{e_r}</math> és <math>\vec{H}(r)=\frac{I_0}{r} \cdot \vec{e_\varphi}</math>  
 
(<math>\vec{e_r}, \vec{e_\varphi}</math> és <math>\vec{e_z}</math> a radiális, <math>\varphi</math> és <math>z</math> irányú egységvektorok)
 
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara <math>r_1</math>, a külső vezető belső sugara <math>r_2</math>, a vezetők ideálisak, a kábel tengelye a <math>z</math> irányú.


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg= A Poynting-vektor kifejezése: <math>S=E \times H \Rightarrow S(r)=E(r)*H(r)*\vec{e_z}</math> (ahol <math>\vec{e_z}</math> a z irányú egységvektor). <br\>Innen a teljesítmény: <math>P=\int_S \vec{S} d \vec{A} = \int_{r_1}^{r_2} \int_0^{2\pi} \frac{U_0 I_0}{r^2} \mathrm{d}\varphi \mathrm{d}r=2\pi U_0 I_0(\frac{1}{r_1}-\frac{1}{r_2})=2\pi U_0 I_0 \frac{r_2-r_1}{r_1 r_2}</math>
|szöveg=
A Poynting-vektor kifejezése: <math>\vec{S}=\vec{E} \times \vec{H} \Rightarrow \vec{S}(r)=E(r) \cdot H(r) \cdot \vec{e_z}</math>
 
''Megjegyzés:'' Mivel egyenáramról van szó, így nincs szükség a 2-vel való osztásra, hiszen egyenáram esetén a csúcsérték megmegegyezik az effektív értékkel.
 
 
Mivel tudjuk, hogy koaxiális kábelben a hatásos teljesítmény a dielektrikumban áramlik, így az áramló hatásos teljesítmény már meghatározható a Poynting-vektornak a dielektrikum keresztmetszetére vett felületintegráljával:
 
 
<math>P=\int_A \vec{S} \;d\vec{s} = \int_{r_1}^{r_2} \int_0^{2\pi} \frac{U_0 I_0}{r^2} \; \mathrm{d}\varphi \mathrm{d}r=
2\pi U_0 I_0\left[-{1 \over r}\right]_{r1}^{r2}=
2\pi U_0 I_0\left(\frac{1}{r_1}-\frac{1}{r_2}\right)=2\pi U_0 I_0 \frac{r_2-r_1}{r_1 r_2}</math>
}}
}}


[[Kategória:Villanyalap]]
[[Kategória:Villamosmérnök]]