„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

Nincs szerkesztési összefoglaló
 
(7 közbenső módosítás, amit 6 másik szerkesztő végzett, nincs mutatva)
545. sor: 545. sor:
== Stacionárius mágneses tér ==
== Stacionárius mágneses tér ==
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
Megoldást nem tudtam, ha valaki tudja, írja be!
Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).


A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
641. sor: 641. sor:




=== 57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
=== 53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon===
 
A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!<br/>Ha esetleg valaki kihúzná az "igazi" 57. feladatot, akkor írja be ennek a helyére, ezt pedig tegye a lap aljára ? feladatként. Köszi!
 
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!


Toroid alakú vasmagon egy <math>N_1=300</math> és egy <math>N_2=500</math> menetes tekercs helyezkedik el. Az <math>N_1</math> menetszámú tekercs öninduktivitása <math>L_1=0,9H</math>. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=


A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
}}
 
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
 
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
 
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
 
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
 
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>
 
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
 
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
 
 
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>


<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:


<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>


}}


=== 58. Feladat: Toroid tekercs fluxusa és energiája===
=== 58. Feladat: Toroid tekercs fluxusa és energiája===
1 313. sor: 1 288. sor:


(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)
(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)
(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó)


}}
}}


=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
1 626. sor: 1 602. sor:


}}
}}
=== 120. Feladat: Felületen átáramló hatásos teljesítmény számítása ===
Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldás ismeretlen.
}}
=== 121. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
}}




1 783. sor: 1 804. sor:


<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
}}
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása ===
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.
Tehát:
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math>
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math>
//Bilicz azt mondta kell a Hx-hez egy negatív előjel
}}
}}