„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

Nincs szerkesztési összefoglaló
 
(19 közbenső módosítás, amit 11 másik szerkesztő végzett, nincs mutatva)
389. sor: 389. sor:


<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>
<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>
/*Szerintem rosszak az integrálási határok, fel vannak cserélve és így negatív eredményt kapunk.*/


Felhasználva a <math>C=\frac Q U</math> formulát:
Felhasználva a <math>C=\frac Q U</math> formulát:
543. sor: 545. sor:
== Stacionárius mágneses tér ==
== Stacionárius mágneses tér ==
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
Megoldást nem tudtam, ha valaki tudja, írja be!
Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).


A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
639. sor: 641. sor:




=== 57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
=== 53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon===
 
A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!<br/>Ha esetleg valaki kihúzná az "igazi" 57. feladatot, akkor írja be ennek a helyére, ezt pedig tegye a lap aljára ? feladatként. Köszi!
 
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!


Toroid alakú vasmagon egy <math>N_1=300</math> és egy <math>N_2=500</math> menetes tekercs helyezkedik el. Az <math>N_1</math> menetszámú tekercs öninduktivitása <math>L_1=0,9H</math>. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=


A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
}}
 
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
 
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
 
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
 
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>


<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>


<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>


Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
}}


=== 58. Feladat: Toroid tekercs fluxusa és energiája===
=== 58. Feladat: Toroid tekercs fluxusa és energiája===
773. sor: 750. sor:


}}
}}
===62. Feladat: Szolenoid tekercs mágneses indukciója ===
Adott: <math>A=5cm^2</math>, <math>N=1000</math>, <math>L=???</math>, <math>\mu_r =???</math>.
Adja meg a mágneses indukció nagyságát a Szolenoid belsejében!


=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===
=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===
921. sor: 904. sor:
Felírjuk a Heimholtz egyenleteket a TV végére:
Felírjuk a Heimholtz egyenleteket a TV végére:


<math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{-j\beta l} </math>
<math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{j\beta l} </math>


<math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{-j\beta l} </math>
<math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{j\beta l} </math>


<math> l = 500m </math>
<math> l = 500m </math>
975. sor: 958. sor:


Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le:
Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le:
Ez egy kedves becsapós kérdés, mert amennyiben <math>Z_{2} = \frac{1}{j\omega C}</math>, akkor <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{\frac{1}{j\omega C}-Z_{0}}{\frac{1}{j\omega C}+Z_{0}}</math>.
ez egy kedves becsapós kérdés, mert amennyiben <math>Z_{2} = \frac{1}{j\omega C}</math>, akkor <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{\frac{1}{j\omega C}-Z_{0}}{\frac{1}{j\omega C}+Z_{0}}</math>.


Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az <math>r =1</math>-et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor.
Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az <math>r =1</math>-et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor.
1 305. sor: 1 288. sor:


(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)
(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)
(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó)


}}
}}


=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
1 575. sor: 1 559. sor:
=== 114. Feladat: Teljesítményváltozás ===
=== 114. Feladat: Teljesítményváltozás ===
Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!
Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!
=== 116. Disszipált teljesítmény alumíniumvezetőben ===
Egy hengeres <math> r = 2mm </math> sugarú és <math> L = 8m </math> hosszúságú alumínium vezetőben <math> I = 3A </math> amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység <math> \delta = 60 \mu m </math> , határozza meg a vezető által disszipált teljesítményt, ha <math> \sigma = 35*10^6 S/m </math>!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Mivel a vizsgáztatóm azt mondta a megoldásomra, hogy rossz. de közben áttértünk a tételre, nem írnék le rossz megoldást.
}}


== Elektromágneses hullám szigetelőben==
== Elektromágneses hullám szigetelőben==


=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
1 609. sor: 1 602. sor:


}}
}}
=== 120. Feladat: Felületen átáramló hatásos teljesítmény számítása ===
Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldás ismeretlen.
}}
=== 121. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
}}




1 710. sor: 1 748. sor:
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
}}
=== 130. Feladat: Elektromágneses síkhullám ideális szigetelőben ===
Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: <math>E(x,t) = 100 \cdot \cos(1.1t - 7.5x) \cdot e_x \frac{V}{m}</math>.
Az idő mértékegysége <math>\mu s</math>, a távolságé <math>km</math>.
Határozza meg a közeg dielektromos állandóját!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A térerősség általános időfüggvénye: <math>E(x,t) = E_0 \cdot \cos(\omega t - \beta x) \cdot e_x</math>.
Ebből látszik, hogy jelen feladatban <math>\omega = 1.1 \frac{Mrad}{s} </math> és <math>\beta = 7.5 \frac{1}{km}</math>.
Tudjuk azt is, hogy <math> v_f = \frac{c}{\sqrt \varepsilon_r} = \frac{\omega}{\beta}</math>. Átrendezve: <math>\varepsilon_r = (\frac{\beta}{\omega} \cdot c)^2 = (\frac{7.5 \cdot 10^-3}{1.1 \cdot 10^6} \cdot 3 \cdot 10^8)^2 = 4.18 </math>.
}}
}}


1 750. sor: 1 804. sor:


<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
}}
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása ===
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.
Tehát:
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math>
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math>
//Bilicz azt mondta kell a Hx-hez egy negatív előjel
}}
}}